参考文献/References:
[1]ROQUET S, CRAVINO A, LERICHE P, et al. Triphenylamine-thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells [J]. J Am Chem Soc, 2006, 128(10): 3459-3466.
[2]SHIROTA Y, KAGEYAMA H. Charge carrier transporting molecular materials and their applications in devices [J]. Chem Rev, 2007, 107(4): 953-1010.
[3]HE C, HE Q, YI Y, et al. Improving the efficiency of solution processable organic photovoltaic devices by a star-shaped molecular geometry [J]. J Mater Chem, 2008, 18(34): 4085-4090.
[4]RONCALI J. Molecular bulk heterojunctions: an emerging approachto organic solar cells [J]. Acc Chem Res, 2009, 42(11): 1719-1730.
[5]WALKERB, TOMAYO A B, DANG X D, et al. Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells [J]. Adv Funct Mater, 2009, 19(19): 3063-3069.
[6]ZHAO G J, WU G L, HE C, et al. Solution-processable multiarmed organic molecules containing triphenylamine and dcm moieties: synthesis and photovoltaic properties [J]. J Phys Chem C, 2009, 113(6): 2636-2642.
[7]SHANG H, FAN H, LIU Y, et al. A solution-processable star-shaped molecule for high performance organic solar cells [J]. Adv Mater, 2011, 23(13): 1554-1557.
[8]ZHANG J, WU G L, HE C, et al. Triphenylamine-containing D-A-D molecules with(dicyanomethylene)pyran as an acceptor unit for bulk-heterojunction organic solar cells [J]. J Mater Chem, 2011, 21(11): 3768-3774.
[9]SUN Y, WELCH G C, LEONG W L, et al. Solution-processed small-molecule solar cells with 6.7%efficiency [J]. Nature Mater, 2012, 11(1): 44-48.
[10]ZHOU J, WAN X, LIU Y, et al. Small molecules based on benzo[1,2-b:4,5-b’]dithiophene unit for high-performance solution-processed organic solar cells [J]. J Am Chem Soc, 2012, 134(39): 16345-16351.
[11]SHEN S, JIANG P, HE C, et al. Solution-processable organic molecule photovoltaic materials with bithienyl-benzodithiophene central unit and indenedione end groups [J]. Chem Mater, 2013, 25(11): 2274-2281.
[12]DENG D, ZHANG Y, YUAN L, et al. Effects of shortened alkyl chains on solution-processable small molecules with oxo-alkylated nitrile end-capped acceptors for high-performance organic solar cells [J]. Adv Energy Mater, 2014, 4(17): 1400538.
[13]MIN J, LUPONOSOV Y N, GERL A, et al. Alkyl chain engineering of solution-processable star-shaped molecules for high-performance organic solar cells [J]. Adv Energy Mater, 2014, 4(5): 1301234.
[14]CUI C H, GUO X, MIN J, et al. High-performance organic solar cells based on a small molecule with alkylthio-thienyl-conjugated side chains without extra treatments [J]. Adv Mater, 2015, 27(45): 7469-7475.
[15]SUN D, MENG D, CAI Y, et al. Non-fullerene-acceptor-based bulk-heterojunction organic solar cells with efficiencyover 7% [J]. J Am Chem Soc, 2015, 137(34): 11156-11162.
[16]SUN K, XIAO Z Y, LU S R, et al. A molecular nematic liquid crystalline material for high-performance organic photovoltaics [J]. Nat Commun, 2015, 6: 6013.
[17]YUAN L, ZHAO Y, ZHANG J, et al. Oligomeric donor material for high-efficiency organic solar cells: breaking down a polymer [J]. Adv Mater, 2015, 27(28): 4229-4233.
[18]MIN J, CUI C H, HEUMUELLER T, et al. Side-chain engineering for enhancing the properties of small molecule solar cells: A trade-off beyond efficiency [J]. Adv Energy Mater, 2016, 6(14): 1600515.
[19]YANG L, ZHANG S, HE C, et al. New wide band gap donor for efficient fullerene-free all-small-molecule organic solar cells [J]. J Am Chem Soc, 2017, 139(5): 1958-1966.
[20]BARAN D, ASHRAF R S, HANIFI D A, et al. Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells [J]. Nature Mater, 2016, 16(3): 363-369.
[21]BIN H, ZHANG ZG, GAO L, et al. Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2d-conjugated polymers reach 9.5% efficiency [J]. J Am Chem Soc, 2016, 138(13): 4657-4664.
[22]BIN H J, GAO L, ZHANG Z G, et al. 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2d-conjugated polymer as donor [J]. Nat Commun, 2016(7): 13651.
[23]DENG D, ZHANG Y J, ZHANG J Q, et al. Fluorination-enabled optimal morphology leads toover 11% efficiency for inverted small-molecule organic solar cells [J]. Nat Commun, 2016(7): 13740.
[24]GAO L, ZHANG Z G, BIN H J, et al. High-efficiency nonfullerene polymer solar cells with medium bandgap polymer donor and narrow bandgap organicsemiconductor acceptor [J]. Adv Mater, 2016, 28(37): 8288-8295.
[25]YANG Y K, ZHANG Z G, BIN H J, et al. Side-chain isomerization on an n-type organic semiconductor itic acceptor makes 11.77% high efficiency polymer solar cells [J]. J Am Chem Soc, 2016, 138(45): 15011-15018.
[26]LI M M, GAO K, WAN X J, et al. Solution-processed organic tandem solar cells with power conversion efficiencies >12% [J]. Nat Photonics, 2016,11(2):85-90.
[27]ZHANG J, ZHU X W, HE C, et al. Impact of the alkyl side chain position on the photovoltaic properties of solution-processable organic molecule donor materials [J]. J Mater Chem A, 2016, 4(30): 11747-11753.
[28]LI Z F, DONG Q F, LI Y W, et al. Design and synthesis of solution processable small molecules towards highphotovoltaic performance [J]. J Mater Chem, 2011, 21(7): 2159-2168.
[29]WU G L, ZHAO G J, HE C, et al. Synthesis and photovoltaic properties of a star-shaped molecule with triphenylamine as core and benzo[1,2,5]thiadiazol vinylene as arms [J]. Sol Energy Mater Sol Cells, 2009, 93(1): 108-113.
[30]XUE L L, HE J T, GU X, et al. Efficient bulk-heterojunction solar cells based on a symmetrical D-π-A-π-D organic dye molecule [J]. J Phys Chem C, 2009, 113(29): 12911-12917.
[31]LI Y F, CAO Y, GAO J, et al. Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells [J]. Synth Met, 1999, 99(3): 243-248.
[32]FAN Q P, SU W Y, GUO X, et al. A new polythiophene derivative for high efficiency polymer solarcells with pce over 9% [J]. Adv Energy Mater, 2016, 6(14):1600430.
[33]HUO L J, ZHANG S Q, GUO X, et al. Replacing alkoxy groups with alkylthienyl groups: A feasible approach to improve the properties of photovoltaic polymers [J]. Angew Chem Int Ed, 2011, 50(41): 9697-9702.
[34]CHEN H Y, HOU J H, ZHANG S Q, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency [J]. Nature Photon, 2009, 3(11): 649-653.
[35]THOMPSON B C, FRECHET J M J. Organic photovoltaics-polymer-fullerene composite solar cells [J]. Angew Chem Int Ed, 2008, 47(1): 58-77.
[36]KOOISTRA F B, MIHAILETCHI V D, POPESCU L M, et al. NewC-84 derivative and its application in a bulk heterojunction solar cell [J]. Chem Mater, 2006, 18(13): 3068-3073.
[37]HE Y J, LI Y F. Fullerene derivative acceptors for high performance polymer solar cells [J]. Phys Chem Chem Phys, 2011, 13(6): 1970-1983.