[1]庞明军,张 展,谢程程.气泡体积分数对液相湍流流场和减阻率的影响[J].常州大学学报(自然科学版),2019,31(04):57-69.[doi:10.3969/j.issn.2095-0411.2019.04.009]
 PANG Mingjun,ZHANG Zhan,XIE Chengcheng.Effect of Bubble Void Fraction on Drag-Reducing Rate and Liquid Turbulent Flow Field[J].Journal of Changzhou University(Natural Science Edition),2019,31(04):57-69.[doi:10.3969/j.issn.2095-0411.2019.04.009]
点击复制

气泡体积分数对液相湍流流场和减阻率的影响()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第31卷
期数:
2019年04期
页码:
57-69
栏目:
机械制造及其自动化
出版日期:
2019-07-28

文章信息/Info

Title:
Effect of Bubble Void Fraction on Drag-Reducing Rate and Liquid Turbulent Flow Field
文章编号:
2095-0411(2019)04-0057-13
作者:
庞明军张 展谢程程
(常州大学 机械工程学院,江苏 常州 213164)
Author(s):
PANG Mingjun ZHANG Zhan XIE Chengcheng
(School of Mechanical Engineering, Changzhou University, Changzhou 213164, China)
关键词:
泡状流动 中等尺度气泡 气泡减阻 气相体积分数
Keywords:
bubbly flow mesoscopic bubble drag reduction by bubbles gas void fraction
分类号:
TQ 021.1
DOI:
10.3969/j.issn.2095-0411.2019.04.009
文献标志码:
A
摘要:
采用混合模型和雷诺应力模型,对水平槽道内气泡减阻效应进行了数值研究,并采用群体平衡模型描述气泡群的时空演变过程。结果表明:在液相雷诺数Re=20 000不变的情况下,减阻率与气相平均体积分数的大小具有直接关系,随着气相平均体积分数的增加,气泡数目随之增多,气泡抑制湍流的能力加强,减阻率也随之增大; 目前最高减阻率已达28%。而且气泡对黏性应力的影响较小,而对雷诺应力具有较大的抑制作用,这或许是导致摩擦阻力减小的主要原因。
Abstract:
In order to understand interactions between bubbles and liquid, the multiphase mixture model combined with Reynolds stress turbulence model were used to investigate the drag reduction by bubbles in a horizontal channel. And the population balance model was used to simulate the temporaland spatial evolution of bubbles. The present result shows that there is the direct relation between the bubble global void fraction and the drag-reducing rate when the liquid Reynolds number is Re=20 000; the bubble number increases with the increase of the global void fraction, leading to an increase on the suppression degree of the bubbles on the liquid-phase turbulence and 28% increase on the drag reduction rate. In addition, the bubbles has the slight influence on the viscous stress, but they sharply reduce the Reynolds stress; the decrease of the liquid reynolds stress may be the main reason that for the reduction of friction resistance.

参考文献/References:

[1]HASHIM A, YAAKOB O B, KOH K K, et al. Review of microbubble ship resistance reduction methods and the mechanisms that affect the skin friction on drag reduction from 1999 to 2015[J]. Journal Teknologi, 2015, 74(5):105-114.
[2]左晶, 王娟, 王江云, 等. 采用群体平衡模型模拟多段环流反应器内的气-液两相流动[J]. 石油学报(石油加工),2016,32(6): 1134-1141.
[3]傅慧萍.基于相群平衡模型的舰船气泡尾流数值模拟[J]. 上海交通大学学报,2013, 47(4): 538-543.
[4]傅慧萍.舰船气泡尾流尺度效应研究[J]. 水动力学研究与进展(A辑),2013, 28(4): 465-470.
[5]段欣悦, 厉彦忠, 张孜博,等. 两种群体平衡模型在大规模多粒径泡状流中的应用研究[J]. 西安交通大学学报,2011,45(12): 92-98.
[6]莫梦婷, 赵文杰, 陈子飞, 等. 海洋减阻技术的研究现状[J]. 摩擦学学报,2015, 35(4): 505-515.
[7]MURAI Y. Frictional drag reduction by bubble injection[J]. Experiments in Fluids, 2014, 55(7): 1773.
[8]KITAGAWA A, HISHIDA K, KODAMA Y. Flow structure of microbubble-laden turbulent channel flow measured by PIV combined with the shadow image technique[J]. Experiments in Fluids, 2005, 38(4): 466-475.
[9]KATO H, IWASHINA T, MIYANAGA M, et al. Effect of microbubbles on the shructure of turbulence in a turbulent boundary layer[J]. J Mar Sci Techol, 1999, 4(4): 155-162.
[10]PARK H J, TASAKA Y, MURAI Y, et al.Vortical structures swept by a bubble swarm in turbulent boundary layers[J]. Chemical Engineering Science, 2014, 116: 486-496.
[11]HARA K, SUZUKI T, YAMAMOTO F.Image analysis applied to study on frictional-drag reduction by electrolytic microbubbles in a turbulent channel flow[J]. Experiments in Fluids, 2011, 50(3): 715-727.
[12]PARK H J, TASAKA Y, OISHI Y, et al.Drag reduction promoted by repetitive bubble injection in turbulent channel flows[J]. International Journal of Multiphase Flow, 2015, 75: 12-25.
[13]VAN GILS D P M, NAREZO GUZMAN D, SUN C, et al.The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor-Couette flow[J]. Journal of Fluid Mechanics, 2013, 722: 317-347.
[14]PAIK B G, YIM G T, KIM K Y, et al. The effects of microbubbles on skin friction in a turbulent boundary layer flow[J]. International Journal of Multiphase Flow, 2016, 80: 164-175.
[15]JACOB B, OLIVIERI A, MIOZZI M, et al. Drag reduction by microbubbles in a turbulent boundary layer[J]. Physics of Fluids, 2010, 22(11), 115104.
[16]GUO X F, ZHOU Q, LI J, et al. Implementation of an improved bubble breakup model for TFM-PBM simulations of gas-liquid flows in bubble columns[J]. Chemical Engineering Science, 2016, 152: 255-266.
[17]傅慧萍,李杰,于彤彤,等. 微气泡减阻的数值模拟方法及尺寸效应[J]. 上海交通大学学报, 2016, 50(2): 278-282.
[18]傅慧萍.平板微气泡减阻数值模拟及影响因素分析[J]. 哈尔滨工程大学学报, 2015, 36(10): 1297-1301.
[19]ASIAGBE K S, FAIRWEATHER M, NJOBUENWU D O, et al. Large eddy simulation of microbubble transport in a turbulent horizontal channel flow[J]. International Journal of Multiphase Flow, 2017, 94: 80-93.
[20]徐一丹, 庞明军, 徐磊, 等.重力水平与粘度变化对水平槽道泡状湍流影响的数值研究[J].常州大学学报(自然科学版), 2016,28(1):60-66.
[21]XING C T, WANG T F, GUO K Y,et al. A unified theoretical model for breakup of bubbles and droplets in turbulent flows[J]. AICHE Journal, 2015, 61(4): 1391-1403.
[22]覃成鹏,杨宁. 多相分散体系中气泡/液滴聚并和破碎的群平衡模拟[J].化学进展,2016, 28(8): 1207-1223.
[23]LIU Z G, LI L M, QI F S, et al. Population balance modeling of polydispersed bubbly flow in continuous casting using multiple size group approach[J]. Metallurgical and Meterials Transactions B, 2015, 46(1): 406-420.
[24]COLOMBO M, FAIRWEATHER M. RANSsimulation of bubble coalescence and break-up in bubbly two-phase flows[J]. Chemical Engineering Science, 2016, 146: 207-225.
[25]DEJU L, CHEUNG S C P, YEOH G H, et al. Capturing coalescence and break-up processes in vertical gas-liquid flows: assessment of population balancemethods[J]. Applied Mathematical Modelling, 2013, 37(18/19): 8557-8577.
[26]MURAI Y, FUKUDA H, OISHI Y, et al. Skin friction reduction by large air bubbles in a horizontal channel flow[J]. International Journal of Multiphase Flow, 2007, 33(2): 147-163.
[27]ISHII M, ZUBER N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J]. AIChE, 1979, 25: 843-855.
[28]YEOH G H, TU J. Computational techniques for multi-phase flows[M]. [S.l.]: Elsevier Ltd, 2010: 373-374.
[29]LUO H, SVENDSEN H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233.
[30]LUO H. Coalescence breakup and liquid circulation in bubble column reactors[D]. Trondheim: The Norwegian Institute of Technology, 1993.
[31]PANG M J, WEI J J, YU B. Numerical study on modulation of microbubbles on turbulence frictional drag in a horizontal channel[J]. Ocean Engineering, 2014, 81: 58-68.

备注/Memo

备注/Memo:
收稿日期:2018-11-10。
基金项目:国家自然科学基金资助项目(51376026)。
作者简介:庞明军(1976—),男,山西大同人,博士,副教授。E-mail: pangmj@cczu.edu.cn
更新日期/Last Update: 2019-07-16