参考文献/References:
[1]徐克勋. 精细有机化工原料及中间体手册(精装)[M]. 北京: 化学工业出版社, 1998: 151-161.
[2]NERI G, DONATO A, MILONE C, et al. Selective hydrogenation ofcitral over Pt-Sn supported on activated carbon[J]. Journal of Chemical Technology & Biotechnology, 1994, 60(1): 83-88.
[3]BACHILLER-BAEZA B, GUERRERO-RUIZ A, WANG P, et al. Hydrogenation of citral on activated carbon and high-surface-area graphite-supported ruthenium catalysts modified with iron[J]. Journal of Catalysis, 2001, 204(2): 450-459.
[4]GALVAGNO S, MILONE C, DONATE A, et al. Influence of metal particle size in the hydrogenation of citral over Ru/C[J]. Catalysis Letters, 1993, 18(4): 349-355.
[5]MUKHERJEE S, VANNICE M A. Solvent effects in liquid-phase reactions: I. activity and selectivity duringcitral hydrogenation on Pt/SiO2 and evaluation of mass transfer effects[J]. Journal of Catalysis, 2006, 243(1): 108-130.
[6]SEBASTIÁN D, SUELVES I, MOLINER R, et al. The effect of the functionalization of carbon nanofibers on their electronic conductivity[J]. Carbon, 2010, 48(15): 4421-4431.
[7]NERI G, MERCADANTE L, DONATO A, et al. Influence of Ru precursor, support and solvent in the hydrogenation of citral over ruthenium catalysts[J]. Catalysis Letters, 1994, 29(3/4): 379-386.
[8]ZAERA F. The surface chemistry of metal-based hydrogenation catalysis[J]. ACS Catalysis, 2017, 7(8): 4947-4967.
[9]PLOMP A J, VUORI H, KRAUSE A O I, et al. Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde[J]. Applied Catalysis A: General, 2008, 351(1): 9-15.
[10]ANANTHAN S A, VENGIDUSAMY N, GIRIBABU K, et al. Carbon nanotunes supported Pt and Pt-Ru catalysts for selective hydrogenation of citral: effect of promoters and thermal activation of catalysts[J]. Advanced Materials Research, 2012, 584: 229-233.
[11]NIE R, MIAO M, DU W, et al. Selective hydrogenation of C=C bond over N-doped reduced graphene oxides supported Pd catalyst[J]. Applied Catalysis B: Environmental, 2016, 180: 607-613.
[12]LIU Z J, LIANG Y L, GENG F F, et al. Preparation of poly(N-isopropylacrylamide)brush grafted silica particles via surface-initiated atom transfer radical polymerization used for aqueous chromatography[J]. Frontiers of Materials Science, 2012, 6(1): 60-68.
[13]SUI X F, CHEN Q, HEMPENIUS M A, et al. Probing the collapse dynamics of poly(N-isopropylacrylamide)brushes by AFM: effects of co-nonsolvency and grafting densities[J]. Small, 2011, 7(10): 1440-1447.
[14]SONG W L, XIA F, BAI Y B, et al. Controllable water permeation on a poly(N-isopropylacrylamide)-modified nanostructured copper mesh film[J]. Langmuir, 2007, 23(1): 327-331.
[15]ZHANG J G, YUAN Y, KILPIN K J, et al. Thermally responsive gold nanocatalysts based on a modified poly-vinylpyrrolidone[J]. Journal of Molecular Catalysis A: Chemical, 2013, 371: 29-35.
[16]WANG Q F, WANG J T, WANG D H, et al. Recyclable and effective Pd/poly(N-isopropylacrylamide)catalyst for hydrodechlorination of 4-chlorophenol in aqueous solution[J]. Chemical Engineering Journal, 2015, 280: 158-164.
[17]GARCÍA-BORDEJÉ E, LIU Y F, SU D S, et al. Hierarchically structured reactors containing nanocarbons for intensification of chemical reactions[J]. Journal of Materials Chemistry A, 2017, 5(43): 22408-22441.
[18]ZHU J, WANG S Q, GU Y K, et al. A new and efficient method of graphene oxide immobilized with ionic liquids: promoted catalytic activity for CO2 cycloaddition[J]. Materials Chemistry and Physics, 2018, 208: 68-76.
[19]BAK J M, LEE T, SEO E, et al. Thermoresponsive graphene nanosheets by functionalization with polymer brushes[J]. Polymer, 2012, 53(2): 316-323.
[20]ZHU J, GU Y K, WU J, et al. Aqueous grafting ionic liquid on graphene oxide for CO2 cycloaddition[J]. Catalysis Letters, 2017, 147(2): 335-344.
[21]LAN D H, YANG F M, LUO S L, et al. Water-tolerant graphene oxide as a high-efficiency catalyst for the synthesis of propylene carbonate from propylene oxide and carbon dioxide[J]. Carbon, 2014, 73: 351-360.
[22]GONG Z L, LI S J, HAN W F, et al. Recyclable graphene oxide grafted with poly(N-isopropylacrylamide)and its enhanced selective adsorption for phenols[J]. Applied Surface Science, 2016, 362: 459-468.
相似文献/References:
[1]彭勇刚,纪俊玲,汪媛,等.ZnSn(OH)6/氧化石墨烯复合材料的水热合成及其光催化性能[J].常州大学学报(自然科学版),2016,(04):25.[doi:10.3969/j.issn.2095-0411.2016.04.005]
PENG Yonggang,JI Junling,WANG Yuan,et al.Hydrothermal Preparation of ZnSn(OH)6/GO Composites and Their Photocatalytic Activities[J].Journal of Changzhou University(Natural Science Edition),2016,(06):25.[doi:10.3969/j.issn.2095-0411.2016.04.005]
[2]刘杨,张中勋,伍铭慧,等.氧化石墨烯修饰壳聚糖基支架的构建及其作为骨修复材料的研究[J].常州大学学报(自然科学版),2018,30(01):87.[doi:10.3969/j.issn.2095-0411.2018.01.014]
LIU Yang,ZHANG Zhongxun,WU Minghui,et al.Preparation of Chitosan Scaffold Modified by Graphene Oxide and Its Potential Applications as Bone Repair Material[J].Journal of Changzhou University(Natural Science Edition),2018,30(06):87.[doi:10.3969/j.issn.2095-0411.2018.01.014]
[3]王 莹,顾正鹏,崔玲玲,等.氧化石墨烯对钛合金表面水润滑性能的影响[J].常州大学学报(自然科学版),2019,31(03):57.[doi:10.3969/j.issn.2095-0411.2019.03.006]
WANG Ying,GU Zhengpeng,CUI Lingling,et al.Effect of Graphene Oxide on Water Lubrication on the Surface of Titanium Alloy[J].Journal of Changzhou University(Natural Science Edition),2019,31(06):57.[doi:10.3969/j.issn.2095-0411.2019.03.006]
[4]郑旭东,张 奕,季 蓉,等.双模板导向印迹复合膜的制备及其回收Nd3+的研究[J].常州大学学报(自然科学版),2019,31(06):69.
ZHENG Xudong,ZHANG Yi,JI Rong,et al.Preparation of Dual-Template Docking Oriented Imprinted
Composite Film and Its Recovery of Nd3+[J].Journal of Changzhou University(Natural Science Edition),2019,31(06):69.