[1]滕巧巧,朱信辉,华 佳,等.脂溶性小檗碱衍生物的合成及其表观油水分配系数测定[J].常州大学学报(自然科学版),2019,31(06):23-30.
 TENG Qiaoqiao,ZHU Xinhui,HUA Jia,et al.Synthesis of Lipophilic Berberine Derivatives and Determination of Their Apparent Oil/Water Partition Coefficient[J].Journal of Changzhou University(Natural Science Edition),2019,31(06):23-30.
点击复制

脂溶性小檗碱衍生物的合成及其表观油水分配系数测定()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第31卷
期数:
2019年06期
页码:
23-30
栏目:
化学化工
出版日期:
2019-11-28

文章信息/Info

Title:
Synthesis of Lipophilic Berberine Derivatives and Determination of Their Apparent Oil/Water Partition Coefficient
文章编号:
2095-0411(2019)06-0023-08
作者:
滕巧巧朱信辉华 佳蒋卫华孟 启
(常州大学 石油化工学院,江苏 常州 213164)
Author(s):
TENG Qiaoqiao ZHU Xinhui HUA Jia JIANG Weihua MENG Qi
(School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China)
关键词:
小檗碱 表观油水分配系数 合成 脂溶性
Keywords:
berberine apparent oil-water partition coefficient synthesis lipophilic
分类号:
O 629.3
文献标志码:
A
摘要:
以3/4-羟基取代苯甲醛为初始原料,经烷基化、醛胺缩合、还原、环合等步骤分别合成了9-甲氧基-10-烷氧基取代(6f—6h)和10-甲氧基-11-烷氧基取代小檗碱衍生物(5a—5e),其中(5c—5e)为新化合物,结构和纯度经熔点,1H NMR,13C NMR,ESI-MS多重表征确认。采用摇瓶法,结合紫外分光光度法考察了两类衍生物在正辛醇-水体系中的表观油水分配系数(logP),结果显示引入长碳链使得小檗碱衍生物的脂溶性普遍性增强。当碳链长度为12时,油水分配系数增幅最大,由-0.62分别增至1.04(5e)和1.40(6h),将更利于肠道吸收。
Abstract:
Using 3/4-hydroxybenzaldehyde as the initial raw material, the 9-methoxy-10-alkoxy-(6f—6h)and 10-methoxy-11-alkoxy substituted berberines(5a—5e)were synthesized by successive alkylation, condensation, reduction and cyclization, etc. New compounds 5c—5e were characterized by 1H NMR, 13C NMR, ESI-MS and melting point analysis. The apparent oil/water distribution coefficient(logP)of these two types of derivatives in n-octanol/aqueous system was investigated by using Shaker method combined with ultraviolet spectrophotometry. The results showed that introducing carbon long chains at the C10 and C11 positions is effective in enhancing the lipophilicity of berberines. Among the long chains, the C12H25 substituents always lead to the maximum increase of the log P values from -0.62(berberine)to 1.04(5e)and 1.40(6h), respectively. They will thus be better for intestinal absorption.

参考文献/References:

[1]林媛, 司书毅, 蒋建东. 小檗碱的抗菌作用[J]. 药学学报, 2018, 53(2):163-168.
[2]WANG N, TAN H Y, LI L, et al. Berberine and Coptidis Rhizoma as potential anticancer agents: recent updates and future perspectives[J]. J Ethnopharmacol, 2015, 176:35-48.
[3]AHMED T, GILANI A U, ABDOLLAHI M, et al. Berberine and neurodegeneration: a review of literature[J]. Pharmacol Rep, 2015, 67(5):970-979.
[4]NI W J, DING H H, TANG L Q. Berberine as a promising anti-diabetic nephropathy drug: an analysis of its effects and mechanisms[J]. Eur J Pharmacol, 2015, 760:103-112.
[5]ZHANG M, FENG L, LI J, et al. Therapeutic potential and mechanisms of berberine in cardiovascular disease[J]. Curr Pharmacol Rep, 2016, 2(6):281-292.
[6]吴宇娟, 李兰芳, 孟俊华. 小檗碱的药代动力学研究概况[J]. 数理医药学杂志, 2008, 21(2):217-219.
[7]杨勇, 叶小利, 郑静, 等. 8-烷基小檗碱的合成[J]. 有机化学, 2007, 27(11):1438-1440.
[8]IWASA K, LEE D U, KANG S I, et al. Antimicrobial activity of 8-alkyl- and 8-phenyl-substituted berberines and their 12-bromo derivatives[J]. J Nat Prod, 1998, 61(9):1150-1153.
[9]LO C Y, HSU L C, CHEN M S, et al. Synthesis and anticancer activity of a novel series of 9-O-substituted berberine derivatives: a lipophilic substitute role[J]. Bioorg Med Chem Lett, 2013, 23(1):305-309.
[10]FU S N, XIE Y Q, TUO J, et al. Discovery of mitochondria-targeting berberine derivatives as the inhibitors of proliferation, invasion and migration against rat C6 and human U87 glioma cells[J]. Med Chem Commun, 2015, 6(1):164-173.
[11]丁阳平, 叶小利, 周洁, 等. 小檗碱衍生物合成及生理活性研究进展[J]. 有机化学, 2012, 32: 667-685.
[12]孟启, 华佳, 蒋卫华, 等. 新型10-取代小檗碱衍生物的合成[J]. 合成化学, 2019, 27(3):183-188.
[13]林维凤. 关于盐酸黄连素合成中环合反应的研究[J]. 沈阳化工, 1981(1):18-22.
[14]BIAN X, HE L,YANG G. Synthesis and antihyperglycemic evaluation of various protoberberine derivatives[J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16(5):1380-1383.
[15]LI Y H,YANG P,KONG W J, et al. Synthesis and structure-activity relationships of berberine analogues as a novel class of low-density-lipoprotein receptor up-regulators[J]. Bioorganic and Medicinal Chemistry Letters, 2008, 18(16):4675-4677.
[16]RADIX S, BARRET R. Total synthesis of two natural phenanthrenes: confusarin and a regioisomer[J]. Tetrahedron, 2007, 63(50):12379-12387.
[17]KATRITZKY A R, LONG Q H, HE H Y, et al. Preparation of 2-alkoxy-5-methoxybenzaldehydes and 2-ethoxy-5-alkoxybenzaldehydes[J]. ARKIVOC, 2000, 1(6):868-875.
[18]MYSLIWIEC D, DONNIO B, CHMIELEWSKI P J, et al. Peripherally fused porphyrins via the Scholl reaction: synthesis, self-assembly, and mesomorphism[J]. J Am Chem Soc, 2012, 134(10):4822-4833.
[19]潘俊芳, 余琛, 朱大元, 等.六种异喹啉生物碱: CN 1314347 A[P], 2001-09-26.
[20]陈帅, 童元峰, 吴松. 盐酸黄连碱的全合成[J]. 合成化学, 2009, 17(4):512-513.
[21]YANG P, SONG D Q, LI Y H, et al. Synthesis and structure-activity relationships of berberine analogues as a novel class of low-density-lipoprotein receptor up-regulators[J]. Bioorg Med Chem Lett, 2008, 18(16):4675-4677.
[22]黄嗣航, 龙晓英, 袁飞, 等. 盐酸小檗碱的溶解度及油水分配系数与大鼠在体肠吸收之间的相关性研究[J]. 中国现代应用药学, 2012, 29(3):233-238.
[23]王庆蓉, 朱万仁. 醋酸泼尼松水中溶解度及正辛醇/水分配系数的测定[J]. 玉林师范学院学报,2007, 28(3): 39-41.
[24]吴义辉, 伍玉甜.药物在辛醇-水体系分配系数的应用[J]. 广东药学, 2000, 10(4): 12-14.
[25]张玉玲, 陈健龙, 王虑虎, 等.小檗碱的油水分配系数及其在体肠循环灌流模型中的肠吸收特性[J]. 中国实验方剂学杂志, 2013, 19(16):1-4.
[26]林婉婷, 龙晓英, 陈文荣, 等.葛根素、黄芩苷、小檗碱及其在葛根芩连制剂(汤剂及微丸)中溶解度及油水分配系数的比较[J]. 广东药科大学学报, 2014, 30(5):533-538.
[27]陆慧, 贾晓斌, 韦英杰, 等. 灵芝三萜表观油水分配系数的测定及其在体肠吸收[J]. 中国实验方剂学杂志, 2011, 17(21):12-16.

备注/Memo

备注/Memo:
收稿日期:2019-04-11。
作者简介:滕巧巧(1988—),女,浙江温州人,博士,讲师。通信联系人:孟启(1965—),E-mail: mengqi@cczu.edu.cn
更新日期/Last Update: 2019-12-02