[1]武花干,叶 亿,陈 墨,等.基于忆阻的低通滤波振荡器准周期与混沌环面振荡研[J].常州大学学报(自然科学版),2019,31(06):88-93.
 WU Huagan,YE Yi,CHEN Mo,et al.Quasi-Periodic and Chaotic-Torus Oscillating Phenomena in Memristor-Based Low-Pass Filter Oscillator[J].Journal of Changzhou University(Natural Science Edition),2019,31(06):88-93.
点击复制

基于忆阻的低通滤波振荡器准周期与混沌环面振荡研()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第31卷
期数:
2019年06期
页码:
88-93
栏目:
信息科学与工程
出版日期:
2019-11-28

文章信息/Info

Title:
Quasi-Periodic and Chaotic-Torus Oscillating Phenomena in Memristor-Based Low-Pass Filter Oscillator
文章编号:
2095-0411(2019)06-0088-06
作者:
武花干叶 亿陈 墨包伯成
(常州大学 信息科学与工程学院, 江苏 常州 213164)
Author(s):
WU Huagan YE Yi CHEN Mo BAO Bocheng
(School of Information Science and Engneering, Changzhou University, Changzhou 213164, China)
关键词:
忆阻 忆阻振荡器 混沌环面 硬件实验
Keywords:
memristor memristive oscillator chaotic-torus hardware experiment
分类号:
O 41
文献标志码:
A
摘要:
准周期与混沌环面振荡行为是一类具有2个零李雅普诺夫指数的特殊非线性现象,这类现象很少同时发生在非线性振荡器中。论文提出了一种基于忆阻的低通滤波振荡器,它是通过将二阶二极管桥忆阻模拟器直接耦合到Sallen-Key低通滤波器上实现的。建立了四阶忆阻振荡电路的数学模型,采用常规动力学分析方法与0-1测试,开展了以电感参数为可变量的动力学行为的数值仿真。随着电感参数的变化,该电路可呈现出准周期振荡与混沌环面振荡等复杂动力学行为。基于分立元器件制作了硬件电路,实验测试结果很好地验证了数值仿真结果。
Abstract:
Quasi-periodic and chaotic-torus oscillating behaviors are special nonlinear phenomena with two zero Lyapunov exponents, which have been rarely both found in a nonlinear oscillator. By directly coupling a second-order diode bridge memristive emulator to a Sallen-Key low-pass filter, a novel memristor-based low-pass filter oscillator is proposed. The mathematical model of the fourth-order memristive oscillating circuit is built. Using the conventional dynamic analysis method and 0-1 test, the numerical simulations of the dynamical behaviors are performed when the inductance is selected as a variable. With the inductance varying, the circuit exhibits complex dynamical behaviors, such as quasi-periodic oscillation, chaotic-torus oscillation, and so on. The hardware circuit is fabricated based on some discrete components, and the experimental results well verify the numerical simulation results.

参考文献/References:

[1]STRUKOV D B, SNIDER G S, STEWART D, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80-83.
[2]EMBORAS A, GOYKHMAN I, DESIATOV B, et al. Nanoscale plasmonic memristor with optical readout functionality[J]. Nano Letters, 2013, 13(12): 6151-6155.
[3]张晨曦, 陈艳, 仪明东, 等. 基于忆阻器模拟的突触可塑性的研究进展[J]. 中国科学:信息科学, 2018, 48(2): 115-142.
[4]XU Q, ZHANG Q L, JIANG T, et al. Chaos in a second-order non-autonomous Wien-bridge oscillator without extra nonlinearity[J]. Circuit World, 2018, 44(3): 108-114.
[5]WU H G, BAO B C, LIU Z, et al. Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator[J]. Nonlinear Dynamics, 2016, 83(1/2): 893-903.
[6]WU H G, YE Y, BAO B C, et al. Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system[J]. Chaos Solitons Fractals, 2019, 121: 178-185.
[7]LEONOV G A, KUZNETSOV N V, MOKAEV T N. Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 28(1/2/3): 166-174.
[8]LI C B, MIN F H, JIN Q S, et al. Extreme multistability analysis of memristor-based chaotic system and its application in image decryption[J]. Aip Advances, 2017, 7(12): 125204.
[9]KIM H, SAH M P, YANG C J, et al. Memristor emulator for memristor circuit applications[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(10): 2422-2431.
[10]SÁNCHEZ-LÓPEZ C, MENDOZA-LÓPEZ J, CARRASCO-AGUILAR M A, et al. A floating analog memristor emulator circuit[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61(5): 309-313.
[11]ABUELMA'ATTI M T, KHALIFA Z. A new memristor emulator and its application in digital modulation[J]. Analog Integral Circuit Signal Process, 2014, 80(3): 577-584.
[12]BAO B C, YU J J, HU F W, et al. Generalized memristor consisting of diode bridge with first order parallel RC filter[J]. International Journal of Bifurcation and Chaos, 2014, 24(11): 1450143.
[13]BAER S M, ERNEUX T, RINZEL J. The slow passage through a Hopf bifurcation: delay, memory effects, and resonance[J]. Siam Journal on Applied Mathematics, 1989, 49(1): 55-71.
[14]IZHIKEVICH E M. Neural excitability, spiking and bursting[J]. International Journal of Bifurcation and Chaos, 2000, 10(6): 1171-1266.
[15]RINZEL J, BAER M. Threshold for repetitive activity for a slow stimulus ramp: a memory effect and its dependence on fluctuations[J]. Biophysical Journal,1988, 54(3): 551-555.
[16]PERC M, MARHL M. Chaos in temporarily destabilized regular systems with the slow passage effect[J]. Chaos Solitons Fractals, 2006, 27(2): 395-403.

备注/Memo

备注/Memo:
收稿日期:2019-05-08。
基金项目:国家自然科学基金资助项目(51607013)。
作者简介:武花干(1987—),女,江苏泰州人,博士,讲师。通信联系人:包伯成(1965—),E-mail:mervinbao@126.com
更新日期/Last Update: 2019-12-02