[1]封金财,孙 浩,朱平华,等.气凝胶砂浆及其复合混凝土研究[J].常州大学学报(自然科学版),2020,32(01):70-78.[doi:10.3969/j.issn.2095-0411.2020.01.011]
 FENG Jincai,SUN Hao,ZHU Pinghua,et al.Review of Mortar and Concrete Composite Incorporated with Aerogel Super-Insulator or Photocatalytic Materials[J].Journal of Changzhou University(Natural Science Edition),2020,32(01):70-78.[doi:10.3969/j.issn.2095-0411.2020.01.011]
点击复制

气凝胶砂浆及其复合混凝土研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第32卷
期数:
2020年01期
页码:
70-78
栏目:
土木工程
出版日期:
2020-01-28

文章信息/Info

Title:
Review of Mortar and Concrete Composite Incorporated with Aerogel Super-Insulator or Photocatalytic Materials
文章编号:
2095-0411(2020)01-0070-09
作者:
封金财孙 浩朱平华赵善宇徐海珣
(常州大学 环境与安全工程学院,江苏 常州 213164)
Author(s):
FENG Jincai SUN Hao ZHU Pinghua ZHAO Shanyu XU Haixun
(School of Environmental & Safety Engineering,Changzhou University,Changzhou 213164,China)
关键词:
气凝胶 超绝缘材料 砂浆 混凝土 光催化
Keywords:
aerogel super-insulating materials mortar concrete photocatalytic
分类号:
TU 528
DOI:
10.3969/j.issn.2095-0411.2020.01.011
文献标志码:
A
摘要:
由气凝胶材料的特性入手,首先评述了气凝胶材料的保温隔热和光催化性能,认为气凝胶可以替代普通轻质骨料(如浮石和珍珠岩等)制备轻质隔热混凝土; 其次总结了气凝胶结合砂浆及其复合混凝土的研究现状,认为气凝胶砂浆及其复合混凝土的研究不仅可以体现其优异保温隔热性能,也可以结合气凝胶复合材料的光催化性能,制备具有光催化性能的保温隔热砂浆; 最后提出了上述方面发展领域尚待解决的一些关键科学问题,确定使用要求下,气凝胶复合混凝土结构耐久性特征的指标与参数等。
Abstract:
Starting from the characteristics of aerogels, this payer firstly reviewed the thermal insulation and photocatalytic properties of aerogel materials. It is believed that aerogels can replace lightweight aggregates(such as pumice and perlite)to prepare lightweight insulating concrete. Secondly, the research status of mortar and concrete composite incorporated with aerogel is summarized. It is believed that the research on aerogel mortar and its composite concrete can not only reflect its excellent thermal insulation performance, but also combine the photocatalytic performance of aerogel composite to realize thermal insulation mortar with photocatalytic performance. Finally, some key scientific problems that have yet to be solved in the development field of the above aspects are proposed, including: determining the indicators and parameters of the durability characteristics of aerogel composite concrete structures under the requirements.

参考文献/References:

[1]杨健辉,朱利伟,余建雨,等. 不同轻质混凝土的强度及耐久性影响因素分析[J]. 混凝土,2017(7):139-143.
[2]刘昊栋,曹瑞东,杨会伟,等. 机制砂-EPS轻质混凝土性能试验研究[J]. 混凝土, 2017(12):108-111.
[3]王武斌, 赵文辉, 苏谦, 等. 聚丙烯纤维增强泡沫轻质混凝土力学性能试验研究[J]. 铁道建筑, 2017(2): 146-150.
[4]吴辉琴, 王痛快, 吴超, 等. EPS轻质节能混凝土砌块砌体受压变形性能试验研究[J]. 施工技术, 2016, 45(12): 90-94.
[5]KOEBEL M, RIGACCI A, ACHARD P. Aerogel-based thermal superinsulation:an overview[J]. Journal of Sol-Gel Science and Technology, 2012, 63(3): 315-339.
[6]CUCE E, CUCE P M, WOOD C J, et al. Toward aerogel based thermal superinsulation in buildings:a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2014, 34: 273-299.
[7]XIE T, HE Y L, HU Z J. Theoretical study on thermal conductivities of silica aerogel composite insulating material[J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2): 540-552.
[8]DU A, ZHOU B, ZHANG Z H, et al. A special material or a new state of matter: a review and reconsideration of the aerogel[J]. Materials, 2013, 6(3): 941-968.
[9]CUI H,ZONG S,WEI W,et al. Preparetion of silica aerogel-like adsorption material and its adsorption capability[J]. Environmental Protection of Chemical Industry,2014,34(6):581-584.
[10]LIU X,HAN Y, YU X Y,et al. Preparation of aerogel based on sorghum straw[J]. Journal of Dalian Polytechnic University,2016,35(5):343-347.
[11]KISTLER S S. Coherent expanded-aerogels[J]. The Journal of Physical Chemistry, 1932, 36(1): 52-64.
[12]孔勇,沈晓冬,崔升. 气凝胶纳米材料[J]. 中国材料进展,2016,35(8):569-576.
[13]史亚春,李铁虎,吕婧,等. 气凝胶材料的研究进展[J]. 材料导报,2013,27(9):20-24.
[14]GESSER H D, GOSWAMI P C. Aerogels and related porous materials[J]. Chemical Reviews, 1989, 89(4): 765-788.
[15]沈军, 王际超, 倪星元, 等. 以水玻璃为源常压制备高保温二氧化硅气凝胶[J]. 功能材料, 2009, 40(1): 149-151, 158.
[16]康爽. 低密度高绝热性能SiO2气凝胶的常压制备及结构性能研究[D]. 西安:长安大学,2012.
[17]LIAO Y D, WU H J, DING Y F, et al. Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites[J]. Journal of Sol-Gel Science and Technology, 2012, 63(3): 445-456.
[18]WU H J, CHEN Y T, CHEN Q L, et al. Synthesis of flexible aerogel composites reinforced with electrospun nanofibers and microparticles for thermal insulation[J]. Journal of Nanomaterials, 2013, 2013: 1-8.
[19]谭僖,杨穆,高鸿毅,等. 纤维复合二氧化硅气凝胶材料的制备[J]. 功能材料,2014,45(16):139-142.
[20]徐海珣. 硅基复合气凝胶的制备及其应用基础研究[D]. 大连:大连理工大学,2011.
[21]祖国庆. 耐高温核/壳结构TiO2/SiO2复合气凝胶的制备及其光催化性能[J]. 物理化学学报,2007(2):360-368.
[22]朱美玲. Cu掺杂TiO2/SiO2复合气凝胶常压制备及光催化性能研究[D]. 大连:大连工业大学, 2014.
[23]田宇,崔帅文,沈钰皓,等. 建筑物外墙墙面不同节能保温材料的性能分析[J]. 新型建筑材料,2017(4):116-119.
[24]赫强. 应用于建筑保温领域的聚氨酯硬泡材料[J]. 合成树脂及塑料,2015,32(5):99-102.
[25]卢秀梅. 酚醛泡沫在现代建筑保温工程中的应用及改性研究进展[J]. 合成树脂及塑料, 2015, 32(5): 87-89.
[26]孟玮,陈蓓,吴丽雅. 膨胀珍珠岩-聚合物复合保温砂浆配合比正交试验研究[J]. 新型建筑材料,2015, 42(12):21-23.
[27]吕丹丹,刘元珍,李珠,等. 玻化微珠保温砂浆碳化和冻融性能试验研究[J]. 混凝土,2015(4):127-129.
[28]KIM S, SEO J, CHA J, et al. Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel[J]. Construction and Building Materials, 2013, 40: 501-505.
[29]GAO T, JELLE B P, GUSTAVSEN A, et al. Aerogel-incorporated concrete: an experimental study[J]. Construction and Building Materials, 2014, 52: 130-136.
[30]郭金涛. 硅气凝胶/玻化微珠复合保温砂浆研究[D]. 西安:长安大学,2011.
[31]WANG F,HUANG L,LIU Z H,et al. Performance optimization of SiO2 aerogel mortar[J]. Equipment Environmental Engineering,2016,13(2):13-17.
[32]王飞,刘朝辉,邓智平,等. 不同体积掺量的SiO2气凝胶对砂浆性能的影响[J]. 功能材料,2016,47(4):64-69.
[33]王飞,黄露,刘朝辉,等. SiO2气凝胶砂浆性能的优化研究[J]. 装备环境工程,2016,13(2):13-17.
[34]刘朝辉,丁逸栋,王飞,等. KH550改性SiO2气凝胶及其掺杂对砂浆性能的研究[J]. 装备环境工程,2017,14(1):71-77.
[35]NG S, SANDBERG L I C, JELLE B P. Insulating and strength properties of an aerogel-incorporated mortar based an UHPC formulations[J]. Key Engineering Materials, 2014, 629/630: 43-48.
[36]RATKE L.Herstellung und eigenschaften eines neuen leichtbetons: aerogelbeton[J]. Beton-Und Stahlbetonbau, 2008, 103(4): 236-243.
[37]叶青,莫荣辉,余亚超,等. 掺氮改性纳米TiO2光催化材料的聚合物水泥砂浆的应用研究[J]. 新型建筑材料,2009,36(4):15-17.
[38]RUOT B, PLASSAIS A, OLIVE F, et al. TiO2-containing cement pastes and mortars: measurements of the photocatalytic efficiency using a rhodamine B-based colourimetric test[J]. Solar Energy, 2009, 83(10): 1794-1801.
[39]BOGUTYN S, ARBOLEDA C, BORDELON A, et al. Rejuvenation techniques for mortar containing photocatalytic TiO2 material[J]. Construction and Building Materials, 2015, 96: 96-101.
[40]DIAMANTI M V, DEL CURTO B, ORMELLESE M, et al. Photocatalytic and self-cleaning activity of colored mortars containing TiO2[J]. Construction and Building Materials, 2013, 46: 167-174.
[41]DIAMANTI M V, PAOLINI R, ROSSINI M, et al. Long term self-cleaning and photocatalytic performance ofanatase added mortars exposed to the urban environment[J]. Construction and Building Materials, 2015, 96: 270-278.
[42]孙亮. 气凝胶膨胀珍珠岩的一种制备方法及其在混凝土中的应用[D]. 太原:太原理工大学,2015.
[43]FICKLER S, MILOW B, RATKE L, et al. Development of high performance aerogel concrete[J]. Energy Procedia, 2015, 78: 406-411.
[44]TSIOULOU O, LAMPROPOULOS A. Development of novel low thermal conductivity concrete using aerogel powder[J]. Construction & Building Materials,2017,131:66-77.
[45]CHENG H L. Influence on the performances of foamed concrete by silica aerogels[J]. American Journal of Civil Engineering, 2015, 3(5): 183.
[46]许孝春. 光催化混凝土的研究与发展[J]. 孝感学院学报, 2001, 21(3): 53-55.
[47]钱春香,赵联芳,付大放,等. 水泥基材料负载纳米TiO2光催化反应动力学模型研究[J]. 安全与环境学报,2005,5(2):60-64.
[48]钱春香,赵联芳,付大放,等. 温湿度和光强对水泥基材料负载纳米TiO2光催化氧化氮氧化物的影响[J]. 环境科学学报,2005,25(5):623-630.
[49]李丽,钱春香. 南京长江三桥光催化功能性混凝土路去除汽车排放氮氧化物的研究[J]. 河南科技大学学报(自然科学版),2009,30(1):49-52.
[50]钱春香,赵联芳,付大放,等. 路面材料负载纳米二氧化钛光催化降解氮氧化物[J]. 硅酸盐学报,2005,33(4):422-427.
[51]都雪静,许洪国,关强,等. 纳米TiO2含量对汽车尾气因子降解效能影响实验研究[J]. 公路交通科技,2007,24(10):155-158.
[52]韩相春,白海莹,关强,等. 二氧化钛光催化材料降解汽车尾气的测试系统设计[J]. 东北林业大学学报,2005(5):89-91.
[53]关强,陈萌. 公路水泥混凝土路面喷涂纳米TiO2净化机动车排放污染物研究[J]. 公路交通科技,2009,26(3):154-158.
[54]BEELDENS A,KNAPEN E,VAN GEMERT D. Polymers in concrete:the synergistic effect between Japan and Belgium photocatalytic activity of TiO2 in polymer modified mortar[J]. Geological Society London Special Publications, 2012,370(1):139-168.
[55]WANG D,LEMG Z,HUBEN M,et al. Photocatalytic pavements with epoxy-bonded TiO2-containing spreading material[J]. Construction & Building Materials,2016,107:44-51.
[56]AMRHEIN K,HELMIG A,KROHM W,等. 掺具有光催化效果添加剂的混凝土可提高空气污染物降解效率[J]. 建筑砌块与砌块建筑, 2015(3):12-18.
[57]郭重霄,郝培文. 二氧化钛光催化剂在沥青路面中的应用[J]. 中外公路,2013,33(5):271-275.
[58]SHEN W,ZHANG C,LI Q,et al. Preparation of titanium dioxide nano particle modified photocatalytic self-cleaning concrete[J]. Journal of Cleaner Production,2015,87(1):762-765.
[59]董瑞,沈卫国,钟景波,等. 光催化自洁净混凝土研究进展[J]. 混凝土,2011(8):62-66.
[60]郭咏梅,洪晓燕,张强,等. 纳米光催化生态道路降解汽车尾气研究进展[J]. 湖南交通科技,2016,42(2):67-71.
[61]倪雅. 混凝土的极致 2015年米兰世博会意大利馆[J]. 时代建筑,2015(4):78-83.

备注/Memo

备注/Memo:
收稿日期:2019-09-03。
基金项目:国家自然科学基金资助项目(51408073, 51678080, 51678081)。
作者简介:封金财(1970—),男,河北景县人,硕士,副教授。E-mail:hjxfjc@126.com
更新日期/Last Update: 2020-01-13