[1]张 晟,殷鸿洋,王凯迪,等.应用发光细菌和斑马鱼对印染废水的毒性评估分析[J].常州大学学报(自然科学版),2020,32(02):22-30.[doi:10.3969/j.issn.2095-0411.2020.02.003]
 ZHANG Sheng,YIN Hongyang,WANG Kaidi,et al.Toxicity Evaluation of Dyeing Bacteria and Zebrafish on Printing and Dyeing Wastewater[J].Journal of Changzhou University(Natural Science Edition),2020,32(02):22-30.[doi:10.3969/j.issn.2095-0411.2020.02.003]
点击复制

应用发光细菌和斑马鱼对印染废水的毒性评估分析()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第32卷
期数:
2020年02期
页码:
22-30
栏目:
环境科学与工程
出版日期:
2020-03-28

文章信息/Info

Title:
Toxicity Evaluation of Dyeing Bacteria and Zebrafish on Printing and Dyeing Wastewater
文章编号:
2095-0411(2020)02-0022-09
作者:
张 晟1殷鸿洋12王凯迪12赵 远1陈文艳12蔡 强2涂保华1
(1.常州大学 环境与安全工程学院,江苏 常州 213164; 2.清华大学 浙江清华长三角研究院,浙江 嘉兴 314006)
Author(s):
ZHANG Sheng1 YIN Hongyang12 WANG Kaidi12 ZHAO Yuan1 CHEN Wenyan12 CAI Qiang2 TU Baohua1
(1.School of Environment and Safety Engineering,Changzhou University,Changzhou 213164,China; 2.Zhejiang Tsinghua Yangtze River Delta Research Institute,Tsinghua University,Jiaxing 314006,China)
关键词:
印染废水 发光细菌 斑马鱼 毒性削减
Keywords:
printing and dyeing wastewater luminous bacteria zebrafish toxicity reduction
分类号:
X 824
DOI:
10.3969/j.issn.2095-0411.2020.02.003
文献标志码:
A
摘要:
厌氧消化处理、膜生物反应器(MBR)等技术已广泛应用于印染行业废水处理。为评估印染废水的环境风险,分别用发光细菌、斑马鱼幼鱼和胚胎来检测及评估消化处理后、膜生物反应器处理后的印染废水的急性毒性及发育毒性。结果表明,消化后的废水对于发光细菌和斑马鱼的毒性较小,其对发光细菌的有效毒性(EC50)和幼鱼的致死浓度(LC50)分别仅为原水浓度的6.87% 和1.83%,且胚胎发育抑制率仅为1.32%。而采用膜生物反应器处理后的废水对幼鱼的LC50为消化单元出水池的74.54%,仍保持高毒性,但其对胚胎发育和发光细菌的影响比较小。总体而言,斑马鱼幼鱼比发光细菌对印染废水的毒性响应更敏感。毒性试验结果显示,膜生物反应器处理对印染废水毒性去除率高于90%,因此,建议将深度处理技术应用于印染废水处理及尾水回用过程。
Abstract:
Dyeing wastewater has become a serious pollution problem and anaerobic digestion technology and membrane bioreactor technology(MBR)have been widely used in environmental protection. In order to evaluate the environmental risk of dyeing wastewater discharge, the acute toxicity and developmental toxicity of the dyeing wastewater after digestion treatment and MBR treatment were measured with luminous bacteria, larvae and zebrafish embryos, and then the ability of the treatment process was evaluated. The results reveal that the digested wastewater showed strong toxicity to zebrafish and luminescent bacteria, while the effective toxicity(EC50)and larvae lethal concentration(LC50)of luminous bacteria were only 6.87% and 1.83% of wastewater, respectively, and the embryos development was suppressed by only 1.32%. Although the wastewater has been treated with membrane bioreactor(MBR), it still has high toxicity, the LC50 of the larvae is 74.54% of wastewater, but the development of embryos and luminescent bacteria has little effect. The results also reveal that zebrafish larvae are more sensitive to luminous bacteria than printing and dyeing wastewater. Finally, it mas found that the toxicity of the treated wastewater treated with the membrane bioreactor was higher than 90% based on the toxicity test. In short, the depth of treatment should be applied to the treatment of printing and dyeing wastewater or tail water recycling.

参考文献/References:

[1]蒋梦然, 陈红,薛罡, 等. 印染废水铁碳微电解深度处理出水生物毒性[J]. 环境工程学报, 2016, 10(6): 3036-3042.
[2]黄利, 陈文艳, 赵远, 等. 制革废水和印染废水的综合毒性评估及鉴别[J]. 环境科学学报, 2015, 21(7): 224-226.
[3]CHENW Y, CAI Q, ZHAO Y, et al. Toxicity evaluation of pig slurry using luminescent bacteria and zebrafish[J]. International Journal of Environmental Research and Public Health, 2014, 11(7): 6856-6870.
[4]范晓丹, 李皓璇, 姬海燕, 等. 生物活性炭法深度处理印染废水及其生物毒性的表征[J]. 环境工程学报, 2015, 9(1): 188-193.
[5]刘梅红. 印染废水处理技术研究进展[J]. 纺织学报, 2007, 28(1): 116-119, 128.
[6]张斌, 刘金海, 冯晓辉. 印染废水污染现状及其处理技术的发展[J]. 科技信息, 2011(5): 796-797.
[7]SARAKINOSH C, BERMINGHAM N, WHITE P A, et al. Correspondence between whole effluent toxicity and the presence of priority substances in complex industrial effluents[J]. Environmental Toxicology and Chemistry, 2000, 19(1): 63-71.
[8]BURGESS R M, HO K T, TAGLIABUE M D, et al. Toxicity characterization of an industrial and a municipal effluent discharging to the marine environment[J]. Marine Pollution Bulletin, 1995, 30(8): 524-535.
[9]PERSOONE G, MARSALEK B, BLINOVA I, et al. A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters[J]. Environmental Toxicology, 2003, 18(6): 395-402.
[10]史政达. 水体中药物残留物的分布、检测和毒性评价[J]. 常州大学学报(自然科学版), 2015, 27(4): 102-106.
[11]王心如. 毒理学基础[M]. 北京: 人民卫生出版社, 2004: 27-36.
[12]RA J S, KIM S D, CHANG N I, et al. Ecological health assessments based on whole effluent toxicity tests and the index of biological integrity in temperate streams influenced by wastewater treatment plant effluents[J]. Environ Toxicol Chem, 2007, 26(9): 2010-2018.
[13]CHIO C P, CHEN W Y, CHOU W C, et al. Assessing the potential risks to zebrafish posed by environmentally relevant copper and silver nanoparticles[J]. Science of Total Environment, 2012, 420: 111-118.
[14]KAIS B, SCHNEIDER K, KEITER S, et al. DMSO modifies the permeability of the zebrafish(Danio rerio)chorion-implications for the fish embryo test(FET)[J].Aquatic Toxicology, 2013, 140: 229-238.
[15]SELDERSLAGHS I W, BLUST R, WITTERS H E. Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set of 27 compounds[J]. Reprod Toxicology, 2012, 33: 142-154.
[16]GALUS M, JEYARANJAAN J, SMITH E, et al. Chronic effects of exposure to a pharmaceutical mixture and municipal wastewater in zebrafish[J]. Aquatic Toxicology, 2013, 132(2): 212-222.
[17]GELLERT G, HEINRICHSDORFF J. Effect of age on the susceptibility of zebrafish eggs to industrial wastewater[J]. Water Research, 2001, 35(15): 3754-3757.
[18]FROEHNER K, MEYER W, GRIMME L H. Time-dependent toxicity in the long-term inhibition assay with Vibrio fischeri[J]. Chemosphere, 2002, 46(7): 987-997.
[19]WEIGT S, HUEBLER N, BRAUNBECK T. Zebrafish teratogenicity test with metabolic activation(mDarT): effects of phase I activation of acetaminophen on zebrafish danio rerio embryos[J]. Toxicology, 2010, 275(1): 36-49.
[20]MERIC S, IACCARINO M, GALLO M, et al. Toxicity of leather tanning wastewater effluents in sea urchin early development and in marine microalgae[J]. Chemosphere, 2005, 61(2): 208-217.
[21]孟繁芹, 吕东方. 印染废水处理技术研究进展[J]. 环境与发展,2018,30(2):103-117.
[22]WIEGAND C, PFLUGMACHER S, OBEREMM A, et al. Activity development of selected detoxication enzymes during the ontogenesis of the zebrafish(Danio rerio)[J]. International review of hydrobiology, 2000, 85(4): 413-422.
[23]HENN K, BRAUNBECK T. Dechorionation as a tool to improve the fish embryo toxicity test(FET)with the zebrafish(Danio rerio)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2011, 153(1): 91-98.
[24]PARDO T, CLEMENTE R, ALVARENGA P, et al. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: II. biological and ecotoxicological evaluation[J]. Chemosphere, 2014, 107: 101-108.
[25]LIU Z P, ZHANG S L, WU E S, et al. Toxicity study on urban sewage to larva of zebrafish[J]. Environmental Science Technology, 2010, 23: 21-27.
[26]SISMAN T, INCEKARA U, YILDIZ Y S. Determination of acute and early life stage toxicity of fat-plant effluent using zebrafish(Danio rerio)[J]. Environmental Toxicology, 2008, 23(4): 480-486.
[27]FANG Y X, YING G G, ZHANG L J, et al. Use of TIE techniques to characterize industrial effluents in the Pearl River Delta region[J]. Ecotoxicology and Environmental Safety, 2012, 76: 143-152.

相似文献/References:

[1]邱 滔,张建文,胡 琦,等.印染废水分质处理研究[J].常州大学学报(自然科学版),2007,(02):47.
 QIU Tao,ZHANG Jian- wen,HU Qi,et al.Dual Treatment Study of Dyeing Wastewater[J].Journal of Changzhou University(Natural Science Edition),2007,(02):47.
[2]裘兆蓉,裴峻峰,郑晓林,等.聚硅酸铝铁Q6a 及有机絮凝剂F2 处理印染废水[J].常州大学学报(自然科学版),2001,(04):14.
 QIU Zhao -rong,PEI Jun -feng,ZHENG Xiao -lin,et al.Treatment of Dyeing Wastewater by Polymeric Silicate Q6a and Cation Polymer Flocculant F2[J].Journal of Changzhou University(Natural Science Edition),2001,(02):14.

备注/Memo

备注/Memo:
收稿日期:2019-12-03。
基金项目:江苏省重点研发专项资金(社会发展)(BE2015670); 常州市科技支撑计划(CE20175060)。
作者简介:张晟(1976—),男,江苏常州人,博士,高级工程师。通信联系人:赵远(1968—),E-mail: zhaoyuan@cczu.edu.cn
更新日期/Last Update: 2020-04-28