[1]卢林冲,赵会军,唐金勇.非轴向速度分量对超声波流量计声道速度测量的影响[J].常州大学学报(自然科学版),2020,32(03):40-46.[doi:10.3969/j.issn.2095-0411.2020.03.006]
 LU Linchong,ZHAO Huijun,TANG Jinyong.Effects of Non-Axial Velocity Component on the Measurement of Acoustic Path's Velocity of Ultrasonic Flowmeter[J].Journal of Changzhou University(Natural Science Edition),2020,32(03):40-46.[doi:10.3969/j.issn.2095-0411.2020.03.006]
点击复制

非轴向速度分量对超声波流量计声道速度测量的影响()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第32卷
期数:
2020年03期
页码:
40-46
栏目:
石油与天然气工程
出版日期:
2020-05-28

文章信息/Info

Title:
Effects of Non-Axial Velocity Component on the Measurement of Acoustic Path's Velocity of Ultrasonic Flowmeter
文章编号:
2095-0411(2020)03-0040-07
作者:
卢林冲12赵会军12唐金勇3
(1. 常州大学 石油工程学院, 江苏 常州 213164; 2. 常州大学 江苏省油气储运技术重点实验室, 江苏 常州 213164; 3. 江苏省天然气有限公司,江苏 南京 210008)
Author(s):
LU Linchong12 ZHAO Huijun12 TANG Jinyong3
(1. School of Petroleum Engineering, Changzhou University, Changzhou 213164, China; 2. Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, Changzhou 213164, China; 3. Jiangsu Natural Gas Co., Ltd., Nanjing 210008, China)
关键词:
超声波流量计 非轴向速度分量 速度测量相对误差 FLUENT Gauss-Jacobi声道布局方案
Keywords:
ultrasonic flowmeter non-axial velocity component speed measurement relative error FLUENT Gauss-Jacobi acoustic path layout scheme
分类号:
TE 832
DOI:
10.3969/j.issn.2095-0411.2020.03.006
文献标志码:
A
摘要:
为了定量分析输气管道中非轴向速度分量对超声波流量计声道速度测量的影响,建立管道模型,利用FLUENT软件获得管内气体流动情况,以水平布置的Gauss-Jacobi声道布局方案中的四声道和45°声平面布置的声道为例,采取逐个积分声道路径上每个网格内声波传播时间从而计算声道流速的方法,得到非轴向速度分量引起的速度测量相对误差。结果表明:声道入射角度的改变对非轴向速度分量引起的相对误差无明显影响; 随90°弯头和三通下游直管段的增加,非轴向速度分量引起的相对误差不断减小,90°弯头下游25D(D为管径)后相对误差绝对值基本降至0.1%以内,三通下游30D后降至5%以内; 水平布置的声道在测量流速时抗非轴向速度分量干扰能力优于45°声平面布置的声道。研究结果可为提升超声波流量计流体扰动耐受性能提供参考。
Abstract:
In order to quantitatively analyze the influence of non-axial velocity component on the velocity measurement of the ultrasonic flowmeter's acoustic paths in the gas transmission pipeline, a pipeline model was established. The FLUENT software was used to simulate the natural gas flow in the pipeline. Take the horizontally arranged four-path of Gauss-Jacobi acoustic path layout scheme and path arranged on 45° acoustic plane as examples. To obtain the acoustic path velocity measurement relative error caused by the non-axial velocity component, a method integrating the sound wave propagation time within each grid to calculate the flow rate on the acoustic path was used. It is shown that the change of the path angle has no significant influence on the relative error of the acoustic path velocity measurement caused by the non-axial velocity component; With the increase of the length of 90° elbow and tee's downstream straight pipe, the relative error caused by the non-axial velocity component decreases continuously. After the 25D(D is the pipe diameter)downstream of 90° elbow, the absolute value of the relative error is basically reduced to less than 0.1%, and after the 30D downstream of tee, the absolute value of the relative error is reduced to less than 5%; Horizontally arranged paths have better resistance to non-axial velocity component disturbances in flow rate measurement than paths arranged on 45° acoustic plane. The research can be used as the reference for improving the fluid disturbance tolerance performance of ultrasonic flowmeter.

参考文献/References:

[1]刘阳.超声波流量检测技术研究[D].西安:西安石油大学,2017.
[2]BRIAN P S,PAMELA I M,GREGOR J B. Ultrasonic transit-time flowmeters modelled with theoretical velocity profiles: methodology[J]. Measurement Science & Technology,2000,11(12):1802-1811.
[3]张涛.基于时差法的超声波流量计的设计[J].能源与环保,2017(3):124-127.
[4]姚欣伟,任晓峰,李卫,等.榆林南储气库双向流量计的选择与应用[J].油气田地面工程,2018,37(10):66-71.
[5]唐晓宇.多声道超声波气体流量检测技术仿真与实验研究[D].杭州:浙江大学,2016.
[6]GARY T,HELEN J. Measurement of flow and volume of gases[J]. Anaesthesia and Intensive Care Medicine,2012,13(3):106-110.
[7]李蕊,刘冰,杨佳,等.速度差法超声波流量计硬件延时误差分析及对策[J].仪表技术与传感器,2017(3):45-48.
[8]吴春华,鲍敏.超声波流量计的弯管误差分析及修正研究[J].机电工程,2015,32(2):175-179.
[9]文闻,宗光华,于洋,等.小管径超声波流量计去噪方法[J].中国空间科学技术,2015,35(2):77-83.
[10]ZHAO H C,PENG L H,TAKAHASHI T,et al. CFD-aided investigation of sound path position and orientation for a dual-path ultrasonic flowmeter with square pipe[J]. IEEE Sensors Journal,2015,15(1):128-137.
[11]CHEN G Y,LIU G X,ZHU B G,et al. 3D isosceles triangular ultrasonic path of transit-time ultrasonic flowmeter: theoretical design and CFD simulations[J]. IEEE Sensors Journal,2015,15(9):4733-4742.
[12]韩思奇,邵欣,檀盼龙,等.基于FLUENT下双声道超声波流量计最优声道研究[J].中国测试,2018,44(8):140-146.
[13]唐晓宇,张宏建,谢翔,等.多声道超声波气体流量计声平面安装角度对测量影响的模型仿真和实验研究[J].中南大学学报(自然科学版),2017,48(7):1923-1929.
[14]刘丹丹.多声道超声波气体流量测量若干问题的研究[D].杭州:浙江大学,2017.
[15]MOHAMMAD O. Improvement of accuracy in multi-path ultrasonic flow meters[J]. Sensors & Transducers,2019,231(3):1-9.
[16]王洪伟.我所理解的流体力学[M].北京:国防工业出版社,2014:230-231.

备注/Memo

备注/Memo:
收稿日期:2019-10-25。
作者简介:卢林冲(1992—),男,江苏高邮人,硕士生。通信联系人:赵会军(1965—),E-mail:zhj@cczu.edu.cn
引用本文:卢林冲,赵会军,唐金勇.非轴向速度分量对超声波流量计声道速度测量的影响[J]. 常州大学学报(自然科学版),2020,32(3):40-46.
更新日期/Last Update: 2020-06-11