参考文献/References:
[1]于洋,刘德俊,孙东旭.基于漏磁内检测与分级理念的管道完整性评价[J].中国安全科学学报,2017,27(1):169-174.
[2]许永勃. 输油管道负压波法泄漏检测技术研究[D].西安:西安石油大学,2018.
[3]NIESEN V, GOULD M. Detecting pipeline leaks[J]. Mechanical Engineering,2017,139(11):34-39.
[4]GONZÁLEZ O, VERDE C, TORRES L. Leak estimation method for complex pipelines with branch junctions[J]. Pressure Vessel Technol,2016,139(2):021701-1-021701-8.
[5]柴艳丽,朱岩,王建强.融合循环自相关函数的小波分析算法在微裂缝检测中的应用[J].测试技术学报,2019(2):116 -120.
[6]饶永超,才政,陈磊,等.伴管式天然气管道泄漏在线监测系统[J].常州大学学报(自然科学版),2017,29(4):73-79.
[7]裴峻峰,代云聪,孙旭,等.原油管式加热炉对流室炉管腐蚀程度的声发射检测[J].常州大学学报(自然科学版),2015,27(1):16-20.
[8]ELLEUCH M, TAGOUGUI N, KHERALLAH M. Optimization of DBN using regularization methods applied for recognizing arabic handwritten script[J]. Procedia Computer Science, 2017,108(6):2292-2297.
[9]YU L, ZHOU R, TANG L,et al. A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data[J]. Applied Soft Computing, 2018, 69(8): 192-202.
[10]KRAUSE O, FISCHER A, IGEL C. Population-contrastive-divergence: does consistency help with RBM training?[J]. Pattern Recognition Letters, 2018,102(1):1-7.
[11]ZHAO R, YAN R Q, CHEN Z H,et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing,2019,15(1): 213-237.
[12]段锁林,顾川林.基于BP神经网络视频火灾火焰检测方法[J].常州大学学报(自然科学版),2017,29(2):65-70.
[13]肖启阳,李健,孙洁娣.基于EWT及互时频的天然气管道泄漏定位[J].仪器仪表学报,2016,37(12):2735-2742.
[14]汪洋,王俊刚.基于深度学习算法的铁路列车运行安全检测[J].中国安全科学学报,2018,28(s2):41-45.
[15]王振华. 基于深度学习的野外巡线系统图像目标检测研究[D].北京:中国地质大学(北京),2018.
[16]王新颖,江志伟,于永亮.多信息融合的城市燃气管道泄漏诊断技术研究[J].中国安全科学学报,2014,24(6):165-170.
[17]于蕊. 泄漏声发射信号特征提取与识别方法研究[D].昆明:昆明理工大学, 2016.