[1]毕明树,任婧杰,沙 嵬,等.热侵袭下易燃液化气体储存安全的关键问题[J].常州大学学报(自然科学版),2020,32(04):1-9.[doi:10.3969/j.issn.2095-0411.2020.04.001]
 BI Mingshu,REN Jingjie,SHA Wei,et al.Study on the Storage Safety of Flammable Liquefied Gas Under Thermal Attack[J].Journal of Changzhou University(Natural Science Edition),2020,32(04):1-9.[doi:10.3969/j.issn.2095-0411.2020.04.001]
点击复制

热侵袭下易燃液化气体储存安全的关键问题()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第32卷
期数:
2020年04期
页码:
1-9
栏目:
特约稿
出版日期:
2020-07-28

文章信息/Info

Title:
Study on the Storage Safety of Flammable Liquefied Gas Under Thermal Attack
文章编号:
2095-0411(2020)04-0001-09
作者:
毕明树1任婧杰1沙 嵬1程 磊1石剑云2
(1. 大连理工大学 化工学院,辽宁 大连 116023; 2. 大连交通大学 交通运输工程学院,辽宁 大连 116028)
Author(s):
BI Mingshu1 REN Jingjie1 SHA Wei1 CHENG Lei1 SHI Jianyun2
(1. School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; 2. School of Traffic and Transportation Engineering, Dalian Jiaotong University, Dalian 116028, China)
关键词:
液化气体 分层翻滚 爆沸 耦合响应
Keywords:
liquefied gas stratification and rollover explosive boiling coupling response
分类号:
X 937
DOI:
10.3969/j.issn.2095-0411.2020.04.001
文献标志码:
A
摘要:
从液化气体储罐受热侵袭后固体材料与罐内介质的热流固耦合响应角度,对液化气体储存安全涉及到的分层翻滚演化机制、储存容器的热固耦合响应行为和液化气体的过热爆沸喷射机制3个关键问题展开讨论。结合可视化实验和热流固耦合响应数值模拟,分析了罐内介质翻滚过程中的分层失稳循环模式、罐体的局部高温区分布特征和开裂行为以及非均匀过热爆沸的两相流膨胀喷射和罐顶动压响应规律。研究发现:分层失稳机制与初始浮力比密切相关; 罐顶高温区温度分布影响储罐的开裂形式; 储罐开裂后的爆沸过程呈现两相流间歇膨胀特征。
Abstract:
In this paper, three key issues concerning the safety of the liquefied gas storage were discussed in terms of the thermo-hydro-solid coupling response of the solid materials and the medium in the liquefied gas storage tank after the thermal invasion. Combined with the visualization experiment and the numerical simulation of the thermo-hydro-solid coupling response, the layered instability circulation mode during the roll over process of the medium in the tank, the local high temperature distribution characteristics and cracking behavior of the tank, as well as the two-phase flow expansion injection and the dynamic pressure response law of the tank top are analyzed. It is found that the mechanism of stratification instability is closely related to the initial buoyancy ratio, the temperature distribution in the high temperature region of the tank top affects the cracking form of the tank, and the explosion boiling process after the cracking of the tank presents the characteristics of intermittent expansion of two-phase flow.

参考文献/References:

[1]TRUCHON P, MATHIEU-POTVIN F. Energy production during regasification of liquefied natural gas: identification of optimal working fluids in low temperature kankine cycles[J]. Energy, 2019, 178: 814-831.
[2]王凌. 某化工厂液氨储罐项目的总图运输设计分析[J]. 化学工程与装备, 2019(4): 179-182.
[3]FRIESE P S, HOPFINGER E J, DREYER M E. Liquid hydrogen sloshing in superheated vessels under microgravity[J]. Experimental Thermal and Fluid Science, 2019, 106: 100-118.
[4]周尖,谷阳,宿伟毅,等. 乙烯装置深冷区甲烷泵密封液泄漏的分析和对策[J]. 乙烯工业, 2018, 30(3):18-20.
[5]SARSTEN J A. LNG stratification and rollover[J]. Pipeline and Gas Journal, 1972, 199(11): 37-39.
[6]SWUSTE P, NUNEN K V, RENIERS G, et al. Domino effects in chemical factories and clusters: an historical perspective and discussion[J]. Process Safety and Environmental Protection, 2019, 124: 18-30.
[7]叶世广. 浅谈液化石油气火灾的特点及消防措施[J]. 石油化工安全技术, 2002(2): 30-31.
[8]周鸿. 浅谈火灾爆炸的预防[J]. 化工劳动保护, 1999(4): 31-33.
[9]KUMAR P. Fire disaster following LPG tanker explosion at Chala in Kannur(Kerala, India): August 27, 2012[J]. Burns, 2013, 39(7):1479-1487.
[10]KIELEC D J, BIRK A M. Analysis of fire-induced ruptures of 400-L propane tanks[J]. Journal of Pressure Vessel Technology, 1997, 119: 365-373.
[11]ANDERSON C, TOWNSEND W, ZOOK J, et al. The effect of a fire environment on a rail tank car filled with LPG[J]. Fire Prevention, 1974(9): 75-31.
[12]DROSTE B, SCHOEN W. Full scale fire test with unprotected and thermal insulated LPG storage tanks[J]. Journal of Hazardous Materials, 1988, 20: 41-53.
[13]MELHEM G A, CROCE P A, ABRAHAM H. Data summary of the national fire protection association BLEVE tests[J]. Process Safety Progress, 1993, 12(2): 76-82.
[14]邢志祥. 火灾环境下液化气储罐热响应动力过程的研究[D]. 南京: 南京工业大学, 2004.
[15]ROBERTS T, GOSSE A, HAWKSWORTH S. Thermal radiation from fireballs on failure of liquefied petroleum gas storage vessels[J]. Process Safety and Environmental Protection, 2000, 78(3): 184-192.
[16]STAWCZYK J. Experimental evaluation of LPG tank explosion hazards[J]. Journal of Hazardous Materials, 2003, 96(2/3): 189-200.
[17]MOODIE K, COWLEY L T, DENNY R B, et al. Fire engulfment tests on a 5 tonne LPG tank[J]. Journal of Hazardous Materials, 1988, 20: 55-71.
[18]BIRK A M, POIRIER D, DAVISION C. On the response of 500 gal propane tanks to a 25% engulfing fire[J]. Journal of Loss Prevention in the Process Industries, 2006, 19: 527-541.
[19]HEYMES F, APRIN L, BIRK A M, et al. An experimental study of an LPG tank at low filling level heated by a remote wall fire[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1484-1491.
[20]LIN W S, GONG Y W, GAO T, et al. Experimental studies on the thermal stratification and its influence on BLEVEs[J]. Experimental Thermal & Fluid Science, 2010, 34(7): 972-978.
[21]CHEN S N, SUN J H, CHU G Q. Small scale experiments on boiling liquid expanding vapor explosions: vessel over-pressure[J]. Journal of Loss Prevention in the Process Industries, 2007, 20: 45-51.
[22]CHEN S N, SUN J H, WAN W. Boiling liquid expanding vapor explosion: experimental research in the evolution of the two-phase flow and over-pressure[J]. Journal of Hazardous Materials, 2008, 156: 503-537.
[23]王海蓉,马晓茜. LNG容器蒸气膨胀爆炸特性研究[J]. 低温工程, 2006, 153(5): 57-60.
[24]尚拓强, 陈思凝, 张东胜, 等. 沸腾液体扩展蒸汽爆炸初期演化过程的数值模拟[J]. 北京化工大学学报, 2012, 39(4): 101-105.
[25]LI M Z, LIU Z Y, ZHOU Y, et al. A small-scale experimental study on the initial burst and the heterogeneous evolution process before CO2 BLEVE[J]. Journal of Hazardous Materials, 2018, 342: 634-642.
[26]ZUO Z Q, JIANG W B, HUANG Y H. Effect of baffles on pressurization and thermal stratification in cryogenic tanks under micro-gravity[J]. Cryogenics, 2018, 96: 116-124.
[27]LIU Z, LI C. Influence of slosh baffles on thermodynamic performance in liquid hydrogen tank[J]. Journal of Hazardous Materials, 2018, 346: 253-262.
[28]REN J J, SHI J J, LIU P, et al. Simulation on thermal stratification and de-stratification in liquefied gas tanks[J]. International Journal of Hydrogen Energy, 2013, 38(10): 4017-4023.
[29]REN J J, ZHANG H, YU J L, et al. Experimental research of heat-mass coupling response of liquid storage tanks[J]. Journal of Hazardous Materials, 2017, 338: 502-507.
[30]SHA W, REN J J, ZHANG H, et al. Analysis of the interfacial instability and the patterns of rollover in multi-component layered system[J]. International Journal of Heat and Mass Transfer, 2018, 126: 235-242.
[31]SHA W, REN J J, WANG C, et al. Dynamic characteristics of the initial interface in stratified multi-composition liquid tanks during rollover[J]. Applied Thermal Engineering, 2018, 145: 396-406.
[32]BI M S, REN J J, ZHAO B, et al. Effect of fire engulfment on thermal response of LPG tanks[J]. Journal of Hazardous Materials, 2011, 192: 874-879.
[33]张瀚, 任婧杰, 沙嵬, 等. 初始浮力比对多组分液体分层失稳的影响[J]. 化工进展, 2019, 38(10): 4481-4488.
[34]TANNY J, DVIRI R, SVIZHER A, et al. The structure of a double-diffusive interface in a laterally heated enclosure[J]. International Journal of Heat and Mass Transfer, 2005, 48(23/24): 4926-4941.
[35]LEE W H. A pressure iteration scheme for two-phase modeling[M]. New Mexico: Los Alamos Press, 1979: 407-431.

备注/Memo

备注/Memo:
收稿日期:2020-01-02。
基金项目:国家自然科学基金资助项目(51077140,51176022,51506025); 高等学校博士学科点专项科研基金(20090041110037); 爆炸科学与技术国家重点实验室开放课题(KFJJ17-02M); 火灾科学国家重点实验室开放课题(HZ2018-KF13)。
作者简介:毕明树(1962—),男,内蒙古赤峰人,博士,教授。E-mail:bimsh@dlut.edu.cn
引用本文:毕明树, 任婧杰, 沙嵬, 等. 热侵袭下易燃液化气体储存安全的关键问题[J]. 常州大学学报(自然科学版),2020,32(4):1-9.
更新日期/Last Update: 2020-07-30