[1]孙一新,王 伟,盛 扬,等.壳聚糖/聚丙烯酸多层膜动态微孔结构的构建及应用[J].常州大学学报(自然科学版),2020,32(04):10-18,45.[doi:10.3969/j.issn.2095-0411.2020.04.002]
 SUN Yixin,WANG Wei,SHENG Yang,et al.onstruction and Application of Dynamic Microporous Structure of Chitosan/Polyacrylic Polyelectrolyte Multilayer Films[J].Journal of Changzhou University(Natural Science Edition),2020,32(04):10-18,45.[doi:10.3969/j.issn.2095-0411.2020.04.002]
点击复制

壳聚糖/聚丙烯酸多层膜动态微孔结构的构建及应用()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第32卷
期数:
2020年04期
页码:
10-18,45
栏目:
材料科学与工程
出版日期:
2020-07-28

文章信息/Info

Title:
onstruction and Application of Dynamic Microporous Structure of Chitosan/Polyacrylic Polyelectrolyte Multilayer Films
文章编号:
2095-0411(2020)04-0010-09
作者:
孙一新12王 伟12盛 扬12周 超3周俊涛3张 嵘12
(1.常州大学 江苏省环境友好高分子材料重点实验室,江苏 常州 213164; 2.常州大学 材料科学与工程学院,江苏 常州 213164; 3.常州大学 生物医学工程与健康科学研究院,江苏 常州 213164)
Author(s):
SUN Yixin12WANG Wei12SHENG Yang12ZHOU Chao3ZHOU Juntao3ZHANG Rong12
(1. Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Changzhou University, Changzhou 213164, China; 2. School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; 3. Institute of Biomedical Engineering and Health Science, Changzhou University, Changzhou 213164, China)
关键词:
层层自组装 多孔海绵结构 湿度响应 动态转变 药物释放
Keywords:
layer-by-layer self-assembly porous sponge structure humidity response dynamic transformation drug release
分类号:
TK 8
DOI:
10.3969/j.issn.2095-0411.2020.04.002
文献标志码:
A
摘要:
传统多层膜包载疏水药物通常涉及合成并且步骤繁琐,因此,有必要开发一种快速、简单的负载疏水性药物的方法。采用层层自组装方法构建壳聚糖/聚丙烯酸(CS/PAA)n多层膜,并用石英晶体微天平(QCM)成功跟踪(CS/PAA)n多层膜的组装。扫描电镜(SEM)结果显示经过酸处理多层膜形成孔洞结构,在100%相对湿度下(CS/PAA)n 多层膜自发愈合。利用毛细作用将疏水性药物四环素负载到多孔膜内,在100%相对湿度条件下对微孔进行封闭,药物分子被包裹在膜内,实现了疏水性药物的大量负载。将载药多层膜在体外进行药物释放模拟,释放时间超过400 h,实现了药物的长效缓释。最后将载药多层膜进行了大肠杆菌和金黄色葡萄球菌的抗菌实验,显示了载药多层膜良好的长效抗菌性能。
Abstract:
Multilayer films loading hydrophobic drugs usually involve synthesis and the steps are complexmplex. Therefore, we have developed a fast and simple method for multilayer films loading hydrophobic drugs. In this study,(CS/PAA)n multilayer film was constructed by layer-by-layer self-assembly method and characterized by quartz crystal microbalance(QCM). Scanning electron microscopy(SEM)results showed that the acid-treated(CS/PAA)n multilayer film form porous structure and can spontaneously heal at 100% relative humidity. The hydrophobic drug tetracycline is loaded into the porous film by capillary action, and the micropores are blocked under the condition of 100% relative humidity, resulting in the drug molecules being encapsulated in the film and realizing a large amount of loading of the hydrophobic drug. The drug-loaded multilayer film was released in phosphate buffer solution for more than 400 h, which achieved long-term sustained release of the drug. Finally, the drug-loaded multilayer films were performed to antibacterial experiments of Escherichia coli and Staphylococcus aureus, showing good long-time antibacterial properties. This method of using acid-treated to make a pore-humidity healing properties for drug loading and sustained release provides a new idea in the field of drug release.

参考文献/References:

[1]DECHER G, HONG J D. Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces [J]. Makromolekulare Chemie-Macromolecular Symposia, 1991, 46: 321-327.
[2]BORGES J, MANO J F. Molecular interactions driving the layer-by-layer assembly of multilayers[J]. Chemical Reviews, 2014, 114(18): 8883-8942.
[3]CHEN S, LI X, LI Y, et al. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric[J]. ACS Nano, 2015, 9(4): 4070-4076.
[4]赵鸣岐,黄威嫔,胡米,等. 生物医用材料表面高分子基涂层的功能化构筑[J]. 材料导报,2019, 33(1):27-39.
[5]胡晓芬. 超支化聚醚层层组装构建心血管植入体表面多功能涂层的研究[D]. 杭州:浙江大学,2010.
[6]ZHU X, LOH X J. Layer-by-layer assemblies for antibacterial applications[J]. Biomaterials Science, 2015, 3(12): 1505-1518.
[7]ZHANG R, RU Y, GAO Y, et al. Layer-by-layer nanoparticles co-loading gemcitabine and platinum(IV)prodrugs for synergistic combination therapy of lung cancer[J]. Drug Design, Development and Therapy, 2017, 11:2631-2642.
[8]PARK S, CHOI D, JEONG H, et al. Drugloading and release behavior depending on the induced porosity of chitosan/cellulose multilayer nanofilms[J]. Molecular Pharmaceutics, 2017, 14: 3322-3330.
[9]雷文茜,任科峰,陈夏超,等. 动态多孔海绵结构多层膜负载溶菌酶用于抗菌涂层的研究[J]. 高分子学报,2017(5): 744-751.
[10]WANG J, CHEN X C, XUE Y F, et al. Thermo-triggered ultrafast self-healing of microporous coating for on-demand encapsulation of biomacromolecules[J]. Biomaterials, 2019, 192: 15-25.
[11]NGUYEN P M, ZACHARIA N S, VERPLOEGEN E, et al. Extended release antibacterial layer-by-layer films incorporating linear-dendritic block copolymer micelles[J]. Chemistry of Materials, 2007, 19(23): 5524-5530.
[12]MICHEL M, ARNTZ Y, FLEITH G, et al. Layer-by-layer self-assembled polyelectrolyte multilayers with embedded liposomes: immobilized submicronic reactors for mineralization[J]. Langmuir, 2006, 22(5): 2358-2364.
[13]THIERRY B, KUJAWA P, TKACZYK C, et al. Delivery platform for hydrophobic drugs: prodrug approach combined with self-assembled multilayers[J]. Journal of the American Chemical Society, 2005, 127(6): 1626-1627.
[14]MONGE C, SAHA N, BOUDOU T, et al. Rigidity-patterned polyelectrolyte films to control myoblast cell adhesion and spatial organization[J]. Advanced Functional Materials, 2013, 23(27): 3432-3442.
[15]CHEN X C, REN K F, ZHANG J H, et al. Humidity-triggered self-healing of microporous polyelectrolyte multilayer coatings for hydrophobic drug delivery[J]. Advanced Functional Materials, 2015, 25(48): 7470-7477.
[16]SWINEHART D F. The beer-lambert law[J]. Journal of Chemical Education, 1962, 39(7): 333-335.
[17]LAVALLE P, GERGELY C, CUISINIER F J G, et al. Comparison of the structure of polyelectrolyte multilayer films exhibiting a linear and an exponential growth regime: an in situ atomic force microscopy study[J]. Macromolecules, 2002, 35(11): 4458-4465.
[18]ZHU Y, XUAN H, REN J, et al. Humidity responsive self-healing based on intermolecular hydrogen bonding and metal-ligand coordination[J]. RSC Advances, 2016, 6(92): 89757-89763.
[19]HAN J, DOU Y, WEI M, et al. Erasable nanoporous antireflection coatings based on the reconstruction effect of layered double hydroxides[J]. Angewandte Chemie, 2010, 122(12): 2217-2220.
[20]BERG M C, ZHAI L, COHEN R E, et al. Controlled drug release from porous polyelectrolyte multilayers[J]. Biomacromolecules, 2006, 7(1): 357-364.
[21]WANG X, LIU F, ZHENG X, et al. Water-enabled self-healing of polyelectrolyte multilayer coatings[J]. Angewandte Chemie, 2011, 50(48): 11378-11381.
[22]DAN N. Drug release through liposome pores[J]. Colloids Surface B: Biointerfaces, 2015, 126: 80-86.
[23]CHOU S F, CARSON D, WOODROW K A. Current strategies for sustaining drug release from electrospun nanofibers[J]. Journal of Controlled Release, 2015, 220: 584-591.
[24]HIGUCHI T. Rate of release of medicaments from ointment bases containing drugs in suspension[J]. Journal of Pharmaceutical Sciences, 1961, 50(10): 874-875.

备注/Memo

备注/Memo:
收稿日期:2020-02-10。
基金项目:国家自然科学基金地区基金资助项目(515630036)。
作者简介:孙一新(1972—),女,湖南邵阳人,博士,副教授。E-mail:sunyixin@cczu.edu.cn
引用本文:孙一新,王伟,盛扬,等.壳聚糖/聚丙烯酸多层膜动态微孔结构的构建及应用[J]. 常州大学学报(自然科学版),2020,32(4):10-18.
更新日期/Last Update: 2020-07-30