参考文献/References:
[1]XIE Y J, LI Z. Triboluminescence: recalling interest and new aspects[J]. Chem, 2018, 4(5):943-971.
[2]CHI Z G, ZHANG X Q, XU B J, et al. Recent advances in organic mechanofluorochromic materials[J]. Chem Soc Rev, 2012, 41(10):3878-3896.
[3]MEI J, LEUNG N L C, KWOK R T K, et al. Aggregation-induced emission: together we shine, united we soar![J]. Chem Rev, 2015, 115(21):11718-11940.
[4]YAGAI S, OKAMURA S, NAKANO Y, et al. Design amphiphilic dipolar pi-systems for stimuli-responsive luminescent materials using metastable states[J]. Nat Commun, 2014, 5:4013.
[5]NAGURA K, SAITO S, YUSA H, et al. Distinct responses to mechanical grinding and hydrostatic pressure in luminescent chromism of tetrathiazolylthiophene[J]. J Am Chem Soc, 2013, 135(28):10322-10325.
[6]ZHANG Y J, CHEN C, TAN B, et al. A dual-stimuli responsive small molecule organic material with tunable multi-state response showing turn-on luminescence and photocoloration[J]. Chem Commun, 2016, 52(13):2835-2838.
[7]BAI L Y, BOSE P, GAO Q, et al. Halogen-assisted piezochromic supramolecular assemblies for versatile haptic memory[J]. J Am Chem Soc, 2017, 139(1):436-441.
[8]ZHAO W J, HE Z K, PENG Q, et al. Highly sensitive switching of solid-state luminescence by controlling intersystem crossing[J]. Nat Commun, 2018, 9:3044.
[9]CHEN Y L, SPIERING A J H, KARTHIKEYAN S, et al. Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain[J]. Nat Chem, 2012, 4(7):559-562.
[10]HERBERT K M, SCHRETTL S, ROWAN S J, et al. 50th anniversary perspective: solid-state multistimuli, multiresponsive polymeric materials[J]. Macromolecules, 2017, 50(22):8845-8870.
[11]CONESA-EGEA J, NOGAL N, MARTINEZ J I, et al. Smart composite films of nanometric thickness based on copper-iodine coordination polymers. toward sensors[J]. Chem Sci, 2018, 9(41):8000-8010.
[12]ZHAO S S, CHEN L, WANG L, et al. Two tetraphenylethene-containing coordination polymers for reversible mechanochromism[J]. Chem Commun, 2017, 53(52):7048-7051.
[13]DONG Y J, XU B, ZHANG J B, et al. Piezochromic luminescence based on the molecular aggregation of 9,10-bis((E)-2-(pyrid-2-yl)vinyl)anthracene[J]. Angew Chem Int Edit, 2012, 51(43):10782-10785.
[14]MAO Z, YANG Z Y, MU Y X, et al. Linearly tunable emission colors obtained from a fluorescent-phosphorescent dual-emission compound by mechanical stimuli[J]. Angew Chem Int Edit, 2015, 54(21):6270-6273.
[15]XU B J, WU H Z, CHEN J R, et al. White-light emission from a single heavy atom-free molecule with room temperature phosphorescence, mechanochromism and thermochromism[J]. Chem Sci, 2017, 8(3):1909-1914.
[16]WILBRAHAM L, LOUIS M, ALBERGA D, et al. Revealing the origins of mechanically induced fluorescence changes in organic molecular crystals[J]. Adv Mater, 2018, 30(28):1800817.
[17]ZHANG G B, ZHANG X J, KONG L, et al. Anion-controlled dimer distance induced unique solid-state fluorescence of cyano substituted styrene pyridinium[J]. Sci Rep, 2016, 6:37609.
[18]YU C Y Y, XU H, JI S L, et al. Mitochondrion-anchoring photosensitizer with aggregation-induced emission characteristics synergistically boosts the radiosensitivity of cancer cells to ionizing radiation[J]. Adv Mater, 2017, 29(15):1606167.
[19]XU J J, ZHANG B L, JANSEN M, et al. Highly fluorescent pyridinium betaines for light harvesting[J]. Angew Chem Int Edit, 2017, 56(44):13882-13886.
[20]JIN X H, CHEN C, REN C X, et al. Bright white-light emission from a novel donor-acceptor organic molecule in the solid state via intermolecular charge transfer[J]. Chem Commun, 2014, 50(100):15878-15881.