参考文献/References:
[1]王利平, 严雪琦, 马佳慧, 等. 太湖富营养化水体除藻工艺分析研究[J]. 常州大学学报(自然科学版), 2017, 29(1): 41-45.
[2]吴文仙. 太湖水体和底泥中总微囊藻与产毒微囊藻丰度的分布特征[D]. 上海: 华东理工大学, 2016.
[3]MASHILE G P, MPUPA A, DIMPE M K, et al. Magnetic activated carbon@ iron oxide@manganese oxide composite as an adsorbent for preconcentration of microcystin-LR in surface water, tap water, water and wastewater[J]. Environmental Nanotechnology, Monitoring & Management, 2018, 10: 199-205.
[4]李亮. 生物炭吸附LR型微囊藻毒素行为与机理研究[D]. 杭州: 浙江工业大学, 2014.
[5]姜蕾. 不同工艺给水厂对典型微囊藻毒素的去除研究[J]. 给水排水, 2017, 43(9): 11-15.
[6]王光云, 吴涓, 谢维, 等. 微囊藻毒素降解菌的筛选、鉴定及其胞内粗酶液对藻毒素MC-LR的降解[J]. 微生物学报, 2012, 52(1): 96-103.
[7]RODRíGUEZ E M, ACERO J L, SPOOF L, et al. Oxidation of MC-LR and RR with chlorine and potassium permanganate: toxicity of the reaction products[J]. Water Research, 2008, 42(6/7): 1744-1752.
[8]王晓雪, 高建平, 赵瑞茹, 等. g-C3N4纳米管的制备及其光催化降解性能[J]. 无机化学学报, 2018, 34(6): 1059-1064.
[9]戴小强, 朱亚波, 许孝良, 等. g-C3N4光催化剂在有机合成中的应用[J]. 有机化学, 2017, 37(3): 577-585.
[10]刘成琪, 王利平, 朱晓峰. 微波辅助法合成S掺杂g-C3N4降解孔雀石绿染料废水[J]. 常州大学学报(自然科学版), 2016, 28(2): 50-54.
[11]谢赛丹. 基于g-C3N4层状材料的传感器研究[D]. 长沙: 湖南大学, 2015.
[12]郭雅容, 陈志鸿, 刘琼, 等. 石墨相氮化碳光催化剂研究进展[J]. 化工进展, 2016, 35(7): 2063-2070.
[13]李荣荣, 王锐, 宫红, 等. 高比表面积g-C3N4的制备及其改性研究进展[J]. 化工新型材料, 2017, 45(1): 35-37.
[14]罗清威, 冉阿倩, 李凤华, 等. 金属有机沉积法制备SrTiO3薄膜[J]. 材料与冶金学报, 2011, 10(3): 193-197.
[15]DANG X, ZHANG X, CHEN Y, et al. Preparation of β-Bi2O3/g-C3N4 nanosheet p-n junction for enhanced photocatalytic ability under visible light illumination[J]. Journal of Nanoparticle Research, 2015, 17(2): 93-100.
[16]KANG H W, LIM S N, SONG D S, et al. Organic-inorganic composite of g-C3N4-SrTiO3: Rh photocatalyst for improved H2 evolution under visible light irradiation[J]. International Journal of Hydrogen Energy, 2012, 37(16): 11602-11610.
[17]WANG S M, LI D L, SUN C, et al. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation[J]. Applied Catalysis B: Environmental, 2014, 144: 885-892.
[18]WU S Z, LI K, ZHANG W D. On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2015, 324: 324-331.
[19]代志刚, 蔺庆伟, 易科浪, 等. 杭州西湖浮游植物群落对沉水植物恢复的响应[J]. 水生态学杂志, 2017, 38(5): 35-45.
[20]杨静, 陈登霞, 邓安平, 等. 掺氮二氧化钛可见光照射降解微囊藻毒素-LR[J]. 中国科学: 化学, 2010, 40(11): 1688-1696.
[21]毛敬英, 杨敏, 狄一安, 等. 高效液相色谱法检测水中5种微囊藻毒素[J]. 环境工程学报, 2012, 6(11): 3882-3888.
[22]MA X G, LV Y, XU J, et al. A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study[J]. The Journal of Physical Chemistry C, 2012, 116(44): 23485-23493.
[23]NIE L H, HUANG Z Q, ZHANG W X. Synthesis of visible-light-driven photocatalyst Ag3PO4 by a precipitation-replacement method[J]. Advanced Materials Research, 2011, 382: 435-438.
[24]党聪哲, 李一兵, 赵旭. 石墨相氮化碳的制备及光催化降解罗丹明B[J]. 环境工程学报, 2018, 12(2): 427-433.
[25]YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2009, 25(17): 10397-10401.
[26]ZHU Z, LU Z Y, WANG D D, et al. Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity[J]. Applied Catalysis B: Environmental, 2016, 182: 115-122.
[27]周贝. 磷酸银-石墨烯复合光催化剂的制备及应用[D]. 长沙: 湖南大学, 2014.
[28]郭燕飞, 吴苏舒, 胡晓东, 等. 可见光响应的碳氮共掺杂TiO2抑杀蓝藻和降解微囊藻毒素(MC-LR)的研究[J]. 环境工程, 2018, 36(6): 35-41.
[29]FANG Y F, HUANG Y P, YANG J, et al. Unique ability of BiOBr to decarboxylate d-Glu and d-MeAsp in the photocatalytic degradation of microcystin-LR in water[J]. Environmental Science & Technology, 2011, 45(4): 1593-1600.
[30]GUO Q, LI H, ZHANG Q, et al. Fabrication, characterization and mechanism of a novel Z-scheme Ag3PO4/NG/polyimide composite photocatalyst for microcystin-LR degradation[J]. Applied Catalysis B: Environmental, 2018, 229: 192-203.
[31]邓一荣, 赵璐, 苏雅玲, 等. TiO2纳米管对水源水中MC-LR的光催化降解[J].中国环境科学, 2018, 38(7): 2498-2504.
[32]LI S J, HU S W, JIANG W, et al. Ag3VO4 nanoparticles decorated Bi2O2CO3 micro-flowers: an efficient visible-light-driven photocatalyst for the removal of toxic contaminants[J]. Frontiers in Chemistry, 2018, 6: 255-262.