[1]蒋善庆,曹 宇,马佳慧,等.Ag3VO4/g-C3N4复合材料可见光催化降解MC-LR的性能[J].常州大学学报(自然科学版),2020,32(05):8-16+26.[doi:10.3969/j.issn.2095-0411.2020.05.002]
 JIANG Shanqing,CAO Yu,MA Jiahui,et al.Performance of MC-LR Photocatalytic Degradation over Ag3VO4/g-C3N4 Composite under Visible Light Irradiation[J].Journal of Changzhou University(Natural Science Edition),2020,32(05):8-16+26.[doi:10.3969/j.issn.2095-0411.2020.05.002]
点击复制

Ag3VO4/g-C3N4复合材料可见光催化降解MC-LR的性能()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第32卷
期数:
2020年05期
页码:
8-16+26
栏目:
材料科学与工程
出版日期:
2020-09-28

文章信息/Info

Title:
Performance of MC-LR Photocatalytic Degradation over Ag3VO4/g-C3N4 Composite under Visible Light Irradiation
文章编号:
2095-0411(2020)05-0008-09
作者:
蒋善庆曹 宇马佳慧张浩东王利平
常州大学 环境与安全工程学院,江苏 常州 213164
Author(s):
JIANG Shanqing CAO Yu MA Jiahui ZHANG Haodong WANG Liping
School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China
关键词:
Ag3VO4/g-C3N4复合材料 可见光催化 微囊藻毒素 准一级动力学
Keywords:
Ag3VO4/g-C3N4 composite visible light catalysis microcystins pseudo first order dynamics
分类号:
X 703
DOI:
10.3969/j.issn.2095-0411.2020.05.002
文献标志码:
A
摘要:
以尿素和三聚氰胺混合煅烧制备了g-C3N4(CN(32)),进一步采用化学沉积法合成了不同负载量的Ag3VO4/CN(32)复合材料。采用X射线衍射、扫描电镜、傅里叶红外光谱和紫外可见光吸收光谱等对复合材料的晶型、组成、形貌、官能团以及光吸收性能进行了表征,考察了其在可见光下催化降解微囊藻毒素(MC-LR)的性能。结果表明,Ag3VO4成功负载在CN(32)表面,且Ag3VO4/CN(32)的光吸收性能较CN(32)有明显提高; 当Ag3VO4的负载量为20%时,Ag3VO4/CN(32)对MC-LR的光催化降解率最高,100 min内可达到85.4%,较CN(32)提高近10倍,且该反应过程符合准一级动力学模型。相比于CN(32),Ag3VO4/CN(32)的光催化性能明显增强的主要原因是Ag3VO4与CN(32)的复合促进了两者间光生电子和空穴分离效率。
Abstract:
g-C3N4(CN(32))was prepared by mixing urea and melamine, and then a series of Ag3VO4/CN(32)composites were successfully synthesized by chemical precipitation method. The crystalline and composition, morphology, functional groups and optical absorption performance of the synthesized samples were characterized by XRD, SEM, FT-IR and UV-Vis. Their photocatalytic performance in visible light was investigated through the experiment of microcystins(MC-LR)degradation. The results showed that Ag3VO4 was successfully loaded on the surface of CN(32), and the light absorption intensity of the composites was significantly improved compared with that of CN(32). The photocatalytic activity of Ag3VO4/CN(32)for MC-LR degradation was optimized. When the mass percentage of Ag3VO4 was 20% in the Ag3VO4/CN(32)composite, the degradation rate reached 85.4% within 100 min, which was 10 times higher than that of CN(32). Furthermore, MC-LR degradation by Ag3VO4/CN(32)showed a good compliance with the pseudo-first-order kinetic model. The enhanced photocatalytic performance of Ag3VO4/CN(32)composite was ascribed to the highly separation rate of electrons and holes.

参考文献/References:

[1]王利平, 严雪琦, 马佳慧, 等. 太湖富营养化水体除藻工艺分析研究[J]. 常州大学学报(自然科学版), 2017, 29(1): 41-45.
[2]吴文仙. 太湖水体和底泥中总微囊藻与产毒微囊藻丰度的分布特征[D]. 上海: 华东理工大学, 2016.
[3]MASHILE G P, MPUPA A, DIMPE M K, et al. Magnetic activated carbon@ iron oxide@manganese oxide composite as an adsorbent for preconcentration of microcystin-LR in surface water, tap water, water and wastewater[J]. Environmental Nanotechnology, Monitoring & Management, 2018, 10: 199-205.
[4]李亮. 生物炭吸附LR型微囊藻毒素行为与机理研究[D]. 杭州: 浙江工业大学, 2014.
[5]姜蕾. 不同工艺给水厂对典型微囊藻毒素的去除研究[J]. 给水排水, 2017, 43(9): 11-15.
[6]王光云, 吴涓, 谢维, 等. 微囊藻毒素降解菌的筛选、鉴定及其胞内粗酶液对藻毒素MC-LR的降解[J]. 微生物学报, 2012, 52(1): 96-103.
[7]RODRíGUEZ E M, ACERO J L, SPOOF L, et al. Oxidation of MC-LR and RR with chlorine and potassium permanganate: toxicity of the reaction products[J]. Water Research, 2008, 42(6/7): 1744-1752.
[8]王晓雪, 高建平, 赵瑞茹, 等. g-C3N4纳米管的制备及其光催化降解性能[J]. 无机化学学报, 2018, 34(6): 1059-1064.
[9]戴小强, 朱亚波, 许孝良, 等. g-C3N4光催化剂在有机合成中的应用[J]. 有机化学, 2017, 37(3): 577-585.
[10]刘成琪, 王利平, 朱晓峰. 微波辅助法合成S掺杂g-C3N4降解孔雀石绿染料废水[J]. 常州大学学报(自然科学版), 2016, 28(2): 50-54.
[11]谢赛丹. 基于g-C3N4层状材料的传感器研究[D]. 长沙: 湖南大学, 2015.
[12]郭雅容, 陈志鸿, 刘琼, 等. 石墨相氮化碳光催化剂研究进展[J]. 化工进展, 2016, 35(7): 2063-2070.
[13]李荣荣, 王锐, 宫红, 等. 高比表面积g-C3N4的制备及其改性研究进展[J]. 化工新型材料, 2017, 45(1): 35-37.
[14]罗清威, 冉阿倩, 李凤华, 等. 金属有机沉积法制备SrTiO3薄膜[J]. 材料与冶金学报, 2011, 10(3): 193-197.
[15]DANG X, ZHANG X, CHEN Y, et al. Preparation of β-Bi2O3/g-C3N4 nanosheet p-n junction for enhanced photocatalytic ability under visible light illumination[J]. Journal of Nanoparticle Research, 2015, 17(2): 93-100.
[16]KANG H W, LIM S N, SONG D S, et al. Organic-inorganic composite of g-C3N4-SrTiO3: Rh photocatalyst for improved H2 evolution under visible light irradiation[J]. International Journal of Hydrogen Energy, 2012, 37(16): 11602-11610.
[17]WANG S M, LI D L, SUN C, et al. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation[J]. Applied Catalysis B: Environmental, 2014, 144: 885-892.
[18]WU S Z, LI K, ZHANG W D. On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2015, 324: 324-331.
[19]代志刚, 蔺庆伟, 易科浪, 等. 杭州西湖浮游植物群落对沉水植物恢复的响应[J]. 水生态学杂志, 2017, 38(5): 35-45.
[20]杨静, 陈登霞, 邓安平, 等. 掺氮二氧化钛可见光照射降解微囊藻毒素-LR[J]. 中国科学: 化学, 2010, 40(11): 1688-1696.
[21]毛敬英, 杨敏, 狄一安, 等. 高效液相色谱法检测水中5种微囊藻毒素[J]. 环境工程学报, 2012, 6(11): 3882-3888.
[22]MA X G, LV Y, XU J, et al. A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study[J]. The Journal of Physical Chemistry C, 2012, 116(44): 23485-23493.
[23]NIE L H, HUANG Z Q, ZHANG W X. Synthesis of visible-light-driven photocatalyst Ag3PO4 by a precipitation-replacement method[J]. Advanced Materials Research, 2011, 382: 435-438.
[24]党聪哲, 李一兵, 赵旭. 石墨相氮化碳的制备及光催化降解罗丹明B[J]. 环境工程学报, 2018, 12(2): 427-433.
[25]YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2009, 25(17): 10397-10401.
[26]ZHU Z, LU Z Y, WANG D D, et al. Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity[J]. Applied Catalysis B: Environmental, 2016, 182: 115-122.
[27]周贝. 磷酸银-石墨烯复合光催化剂的制备及应用[D]. 长沙: 湖南大学, 2014.
[28]郭燕飞, 吴苏舒, 胡晓东, 等. 可见光响应的碳氮共掺杂TiO2抑杀蓝藻和降解微囊藻毒素(MC-LR)的研究[J]. 环境工程, 2018, 36(6): 35-41.
[29]FANG Y F, HUANG Y P, YANG J, et al. Unique ability of BiOBr to decarboxylate d-Glu and d-MeAsp in the photocatalytic degradation of microcystin-LR in water[J]. Environmental Science & Technology, 2011, 45(4): 1593-1600.
[30]GUO Q, LI H, ZHANG Q, et al. Fabrication, characterization and mechanism of a novel Z-scheme Ag3PO4/NG/polyimide composite photocatalyst for microcystin-LR degradation[J]. Applied Catalysis B: Environmental, 2018, 229: 192-203.
[31]邓一荣, 赵璐, 苏雅玲, 等. TiO2纳米管对水源水中MC-LR的光催化降解[J].中国环境科学, 2018, 38(7): 2498-2504.
[32]LI S J, HU S W, JIANG W, et al. Ag3VO4 nanoparticles decorated Bi2O2CO3 micro-flowers: an efficient visible-light-driven photocatalyst for the removal of toxic contaminants[J]. Frontiers in Chemistry, 2018, 6: 255-262.

备注/Memo

备注/Memo:
收稿日期:2020-05-13。
基金项目:国家级大学生创新创业项目(201810292007); 常州大学自然科学基金资助项目(ZMF18020309)。
作者简介:蒋善庆(1988—),男,安徽池州人,博士,讲师。通信联系人:王利平(1960—),E-mail:wlp@cczu.edu.cn
更新日期/Last Update: 2020-09-20