[1]傅雯倩,吴蒙雨,陈中淼,等.酸性Cu/ZSM-5-NA催化剂提高肉桂酸脱羧偶联反应活性[J].常州大学学报(自然科学版),2020,32(05):35-42+66.[doi:10.3969/j.issn.2095-0411.2020.05.005]
 FU Wenqian,WU Mengyu,CHEN Zhongmiao,et al.Acidic Cu/ZSM-5-NA Catalyst Enhancement of Cinnamic Acid Decarboxylative Cross-Coupling Reaction Activity[J].Journal of Changzhou University(Natural Science Edition),2020,32(05):35-42+66.[doi:10.3969/j.issn.2095-0411.2020.05.005]
点击复制

酸性Cu/ZSM-5-NA催化剂提高肉桂酸脱羧偶联反应活性()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第32卷
期数:
2020年05期
页码:
35-42+66
栏目:
化学化工
出版日期:
2020-09-28

文章信息/Info

Title:
Acidic Cu/ZSM-5-NA Catalyst Enhancement of Cinnamic Acid Decarboxylative Cross-Coupling Reaction Activity
文章编号:
2095-0411(2020)05-0035-08
作者:
傅雯倩吴蒙雨陈中淼王 辉
常州大学 石油化工学院,江苏 常州 213164
Author(s):
FU Wenqian WU Mengyu CHEN Zhongmiao WANG Hui
School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
关键词:
纳米ZSM-5沸石 酸性 脱羧偶联 肉桂酸
Keywords:
nanosized ZSM-5 zeolite acidity decarboxylative cross-coupling cinnamic acid
分类号:
TQ 463.3
DOI:
10.3969/j.issn.2095-0411.2020.05.005
文献标志码:
A
摘要:
以含有季铵基团的高分子聚合物为模板剂合成酸性的、纳米粒子组装的ZSM-5沸石(ZSM-5-NA),并制备了Cu/ZSM-5-NA催化剂,相比较于ZSM-5-NA及微孔ZSM-5沸石负载的Cu催化剂,其在肉桂酸与四氢呋喃的脱羧偶联反应中表现出优异的催化性能。这是由于Cu/ZSM-5-NA催化剂上的酸性位点不仅能够促进四氢呋喃转变为对应的烷基自由基,而且催化剂中的Cu物种可以与肉桂酸中的羧基氧原子配位,进一步提高底物的反应活性。
Abstract:
An acidic ZSM-5 zeolite composed by nanocrystals(ZSM-5-NA)was successfully synthesized using a polymer containing quaternary ammonium group as a soft template, and was used for preparation of Cu/ZSM-5-NA catalyst. Cu/ZSM-5-NA catalyst shows superior catalytic performance in the decarboxylative cross-coupling of the cinnamic acid with tetrahydrofuran, as compared to ZSM-5-NA and conventional ZSM-5 zeolite supported Cu catalyst. This feature should be due to the fact that the acidic sites in Cu/ZSM-5-NA catalyst can facilitate the tetrahydrofuran transformation into corresponding alkyl radical, and the Cu species in the catalyst could be coordinated with carboxyl in cinnamic acid, improving the reaction activity of the substrate.

参考文献/References:

[1]NOBLE A, MCCARVER S J, MACMILLAN D W. Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides[J]. Journal of the American Chemical Society, 2015, 137(2): 624-627.
[2]SANDFORT F, O'NEILL M J, CORNELLA J, et al. Alkyl-(hetero)aryl bond formation via decarboxylative cross-coupling: a systematic analysis[J]. Angewandte Chemie(International Ed. in English), 2017, 56(12): 3319-3323.
[3]MOON P J, YIN S K, LUNDGREN R J. Ambient decarboxylative arylation of malonate half-esters via oxidative catalysis[J]. Journal of the American Chemical Society, 2016, 138(42): 13826-13829.
[4]CUI Z L, SHANG X J, SHAO X F, et al. Copper-catalyzed decarboxylative alkenylation of sp3 C—H bonds with cinnamic acids via a radical process[J]. Chemical Science, 2012, 3(9): 2853-2858.
[5]ZHANG J X, WANG Y J, ZHANG W, et al. Selective nickel-and manganese-catalyzed decarboxylative cross coupling of some α, β-unsaturated carboxylic acids with cyclic ethers[J]. Scientific Reports, 2014, 4: 7446-7451.
[6]付拯江, 李兆杰, 熊起恒, 等. Pd催化(杂环)芳基羧酸脱羧的偶联反应研究进展[J]. 有机化学, 2015, 35(5): 984-996.
[7]SUN C L, SHI Z J. Transition-metal-free coupling reactions[J]. Chemical Reviews, 2014, 114(18): 9219-9280.
[8]WECKHUYSEN B M, YU J H. Recent advances in zeolite chemistry and catalysis[J]. Chemical Society Reviews, 2015, 44(20): 7022-7024.
[9]MOHAMMADPARAST F, HALLADJ R, ASKARI S. The crystal size effect of nano-sized ZSM-5 in the catalytic performance of petrochemical processes: a review[J]. Chemical Engineering Communications, 2015, 202(4): 542-556.
[10]DONG H, ZHANG L, FANG Z X, et al. Acidic hierarchical zeolite ZSM-5 supported Ru catalyst with high activity and selectivity in the seleno-functionalization of alkenes[J]. RSC Advances, 2017, 7(36): 22008-22016.
[11]FU W Q, LIU T T, FANG Z X, et al. High activity and stability in the cross-coupling of aryl halides with disulfides over Cu-doped hierarchically porous zeolite ZSM-5[J]. Chemical Communications(Cambridge, England), 2015, 51(27): 5890-5893.
[12]TANG T D, ZHANG L, FU W Q, et al. Design and synthesis of metal sulfide catalysts supported on zeolite nanofiber bundles with unprecedented hydrodesulfurization activities[J]. Journal of the American Chemical Society, 2013, 135(31): 11437-11440.
[13]FU W Q, ZHANG L, WU D F, et al. Mesoporous zeolite ZSM-5 supported Ni2P catalysts with high activity in the hydrogenation of phenanthrene and 4, 6-dimethyldibenzothiophene[J]. Industrial & Engineering Chemistry Research, 2016, 55(26): 7085-7095.
[14]PAUL S, GUIN J. Radical C(sp3)-H alkenylation, alkynylation and allylation of ethers and amides enabled by photocatalysis[J]. Green Chemistry, 2017, 19(11): 2530-2534.
[15]ZHAO J C, ZHOU W, HAN J L, et al. Iron-catalyzed alkenylation of cyclic ethers via decarboxylative sp3(C)-sp2(C)coupling[J]. Tetrahedron Letters, 2013, 54(48): 6507-6510.
[16]CHEN Z L, ZHANG Y X, AN Y, et al. Radical addition of ethers to terminal alkynes with high E-selectivity[J]. European Journal of Organic Chemistry, 2009, 2009(30): 5146-5152.
[17]XIANG M, NI X J, YI X F, et al. Preparation of mesoporous zeolite ETS-10 catalysts for high-yield synthesis of α,β-epoxy ketones[J]. ChemCatChem, 2015, 7(3): 521-525.
[18]ZHANG Z H, ZHONG X H, LIU S H, et al. Aminolysis route to monodisperse titania nanorods with tunable aspect ratio[J]. Angewandte Chemie International Edition, 2005, 44(22): 3466-3470.
[19]TSAY J D, FANG T T. Effects of molar ratio of citric acid to cations and of pH value on the formation and thermal-decomposition behavior of Barium titanium citrate[J]. Journal of the American Ceramic Society, 2004, 82(6): 1409-1415.

备注/Memo

备注/Memo:
收稿日期:2020-02-05。
基金项目:国家自然科学石油化工联合基金资助项目(U1662139); 中国石油科技创新基金资助项目(2018D-5007-0401)。
作者简介:傅雯倩(1987—),女,浙江金华人,博士,讲师。E-mail:fuwenqian@cczu.edu.cn
更新日期/Last Update: 2020-09-20