参考文献/References:
[1]AL-DEGS Y S, EL-SHEIKH A H, AL BAKAIN R Z, et al. Conventional and upcoming sulfur-cleaning technologies for petroleum fuel: a review[J]. Energy Technology, 2016, 4: 679-699.
[2]ZHAO H, GUO S, ZHAO H. Impacts of GDP, fossil fuel energy consumption, energy consumption intensity, and economic structure on SO2 emissions: a multi-variate panel data model analysis on selected Chinese provinces[J]. Sustainability, 2018, 10: 657-677.
[3]WU Y, ZHANG S, HAO J, et al. On-road vehicle emissions and their control in China: a review and outlook[J]. Science of the Total Environment, 2017, 574: 332-349.
[4]NEUBAUER R, WEINLAENDER C, KIENZL N, et al. Adsorptive on-board desulfurization over multiple cycles for fuel-cell-based auxiliary power units operated by different types of fuels[J]. Journal of Power Sources, 2018, 385: 45-54.
[5]ZHONG H, WANG C, ZHOU G, et al. Static adsorption desulfurization based on nanomaterials[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2655-2663.
[6]FU J, GUO Y, MA W, et al. Syntheses and ultra-deep desulfurization performance of sandwich-type polyoxometalate-based TiO2 nanofibres[J]. Journal of Materials Science, 2018, 53: 15418-15429.
[7]WANG L, ZHAO L, XU C, et al. Screening of active metals for reactive adsorption desulfurization adsorbent using density functional theory[J]. Applied Surface Science, 2017, 399: 440-450.
[8]SUN X, HUSSAIN A H M S, CHI M, et al. Persistent adsorptive desulfurization enhancement of TiO2 after one-time ex-situ UV-treatment[J]. Fuel, 2017, 193: 95-100.
[9]SUN X, TATARCHUK B J. Photo-assisted adsorptive desulfurization of hydrocarbon fuels over TiO2 and Ag/TiO2[J]. Fuel, 2016, 183: 550-556.
[10]DENG L, XIE Y, ZHANG G. Sythesis of C-Cl-codoped titania/attapulgite composites with enhanced visible-light photocatalytic activity[J]. Chinese Journal of Catalysis, 2017, 38: 379-388.
[11]QI K, LIU S, QIU M. Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects[J]. Chinese Journal of Catalysis, 2018, 39: 867-875.
[12]HIRAKAWA T, NOSAKA Y. Properties of O2-· and OH· formed in TiO2 aqueous suspensions by photo-catalytic reaction and influence of H2O2 and some ions[J]. Lanngmuir, 2002, 18: 3247-3254.
[13]LI M, ZHANG M, BI X. Preparation of Y-doped TiO2 photo-catalysts with microwave irradiation in ionic liquid and microwave enhanced photo-catalytic activity[J]. Chemical Research, 2016, 27(2): 234-240.
[14]LI Y, YAN L, JIANG B. Simple way to enhance the photocatalytic activity and application in antireflective coatings for amorphous TiO2[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(9): 1701-1709.
[15]LAMPIMAKI M, SCHREIBER S, ZELENAY V, et al. Exploring the environmental photochemistry on the TiO2(110)surface in situ by near ambient pressure X-ray photoelectron spectroscopy[J]. Journal of Physical Chemistry C, 2015, 119(13): 7076-7085.
[16]KIPREOS M D, FOSTER M. Water interactions on the surface of 50 nm rutile TiO2 nanoparticles using in situ DRIFTS[J]. Surface Science, 2018, 677: 1-7.
[17]SONG H, WANG D, MU J. Effects of toluene and pyridine on the desulfurization properties of Ag/TiO2-NaY [J]. ACTA Petrolei Sinica(Petroleum Processing Section), 2012, 28(6): 920-926.
[18]HUSSAIN A H M S, TATARCHUK B J. Mechanism of hydrocarbon fuel desulfurization using Ag/TiO2-Al2O3 adsorbent[J]. Fuel Processing Technology, 2014, 126: 233-242.
[19]SONG L, HU Y, QIN Y, et al. Mechanism of effects of surface acidity on performance of adsorption desulfurization of NiY zeolites[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1082-1088.
[20]THOMPSON T L, PANAYOTOV D A, YATES J T. Adsorption and thermal decomposition of 2-chloroethyl ethyl sulfide on TiO2 surface[J]. Journal of Physical Chemistry B, 2004, 108: 16825-16833.