[1]孙雪妮,迟名扬,TATARCHUK Bruce,等.锐钛型TiO2在紫外光吸附脱硫中的机理研究[J].常州大学学报(自然科学版),2020,32(06):15-21.[doi:10.3969/j.issn.2095-0411.2020.06.003]
 SUN Xueni,CHI Mingyang,TATARCHUK Bruce,et al.Mechanism of Anatase TiO2 During UV Adsorptive Desulfurization[J].Journal of Changzhou University(Natural Science Edition),2020,32(06):15-21.[doi:10.3969/j.issn.2095-0411.2020.06.003]
点击复制

锐钛型TiO2在紫外光吸附脱硫中的机理研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第32卷
期数:
2020年06期
页码:
15-21
栏目:
材料科学与工程
出版日期:
2020-11-28

文章信息/Info

Title:
Mechanism of Anatase TiO2 During UV Adsorptive Desulfurization
文章编号:
2095-0411(2020)06-0015-07
作者:
孙雪妮1迟名扬2TATARCHUK Bruce2 谢婷婷1王晗萤1王 俊1韶 晖1
1.常州大学 石油化工学院,江苏省绿色催化材料与技术重点实验室,江苏 常州 213164; 2.奥本大学,阿拉巴马 奥本 36849
Author(s):
SUN Xueni1 CHI Mingyang2 TATARCHUK Bruce2 XIE Tingting1 WANG Hanying1 WANG Jun1 SHAO Hui1
SUN Xueni1, CHI Mingyang2, TATARCHUK Bruce2, XIE Tingting1, WANG Hanying1, WANG Jun1, SHAO Hui1
关键词:
吸附脱硫 紫外光 TiO2 羟基自由基 苯并噻吩
Keywords:
adsorptive desulfurization UV TiO2 hydroxyl radical benzothiophene
分类号:
TQ 202
DOI:
10.3969/j.issn.2095-0411.2020.06.003
文献标志码:
A
摘要:
以锐钛型TiO2为吸附剂,采用固定床进行穿透实验,分别考察TiO2在传统无光及新型紫外光辅助工艺中的脱硫性能,然后根据穿透曲线计算得出吸附剂在不同操作条件下的穿透硫容量和饱和硫容量。结果表明紫外光辅助吸附脱硫技术能显著提高TiO2对于模拟燃料油和JP8重型煤油型燃油的吸附脱硫性能。之后采用荧光光谱仪和X射线光电子能谱仪(XPS)考察表面活性基团的形成路径,最后采用原位红外光谱技术(in-situ IR),以正辛烷和苯并噻吩为探针分子,考察紫外光下有机硫化物与活性位的结合机理。表征结果显示:紫外光激发的羟基自由基能与晶格氧、桥联羟基及化学吸附水发生反应,生成大量的活性端羟基,有利于吸附脱硫。在紫外光辅助吸附脱硫过程中,烷烃和有机硫化物较稳定,不发生光催化氧化反应,大部分苯并噻吩可与活性端羟基形成π耦合,少部分噻吩的苯环与端羟基以氢键相结合,从而被吸附脱除。
Abstract:
Breakthrough experiments were carried out using anatase TiO2 as the adsorbent. Sulfur removal performances of TiO2 were studied during traditional non-UV and novel UV-assisted adsorptive desulfurization(ADS)techniques individually. The breakthrough and saturation capacities of the adsorbent under different conditions were then calculated based on breakthrough curves. The results indicated that UV-ADS increased TiO2’s sulfur removal capacities towards the model fuel and JP8 fuel apparently. Fluorescence and X-ray photo-electron spectroscopy(XPS)were applied to investigate possible formation pathway of surface active groups. Finally, the interaction mechanism between organosulfur compounds and sulfur removal active sites was studied by in-situ infrared spectroscopy(IR)method, using n-octane and benzothiophene as probing molecules.The characterization results showed that UV-induced hydroxyl radicals, reacting with lattice oxygen, bridged hydroxyl groups and the chemisorbed H2O, could generate a large amount of active terminal hydroxyl groups, which enhanced adsorptive desulfurization capability. Alkane and organosulfur compounds were quite stable during UV-assisted ADS, without occurring any photocatalytic oxidative reaction. Most benzothiophene compounds were considered to form π-interactions with active terminal hydroxyl groups, while some thiophene compounds were removed via H-bond between benzene rings and terminal hydroxyl groups.

参考文献/References:


[1]AL-DEGS Y S, EL-SHEIKH A H, AL BAKAIN R Z, et al. Conventional and upcoming sulfur-cleaning technologies for petroleum fuel: a review[J]. Energy Technology, 2016, 4: 679-699.
[2]ZHAO H, GUO S, ZHAO H. Impacts of GDP, fossil fuel energy consumption, energy consumption intensity, and economic structure on SO2 emissions: a multi-variate panel data model analysis on selected Chinese provinces[J]. Sustainability, 2018, 10: 657-677.
[3]WU Y, ZHANG S, HAO J, et al. On-road vehicle emissions and their control in China: a review and outlook[J]. Science of the Total Environment, 2017, 574: 332-349.
[4]NEUBAUER R, WEINLAENDER C, KIENZL N, et al. Adsorptive on-board desulfurization over multiple cycles for fuel-cell-based auxiliary power units operated by different types of fuels[J]. Journal of Power Sources, 2018, 385: 45-54.
[5]ZHONG H, WANG C, ZHOU G, et al. Static adsorption desulfurization based on nanomaterials[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2655-2663.
[6]FU J, GUO Y, MA W, et al. Syntheses and ultra-deep desulfurization performance of sandwich-type polyoxometalate-based TiO2 nanofibres[J]. Journal of Materials Science, 2018, 53: 15418-15429.
[7]WANG L, ZHAO L, XU C, et al. Screening of active metals for reactive adsorption desulfurization adsorbent using density functional theory[J]. Applied Surface Science, 2017, 399: 440-450.
[8]SUN X, HUSSAIN A H M S, CHI M, et al. Persistent adsorptive desulfurization enhancement of TiO2 after one-time ex-situ UV-treatment[J]. Fuel, 2017, 193: 95-100.
[9]SUN X, TATARCHUK B J. Photo-assisted adsorptive desulfurization of hydrocarbon fuels over TiO2 and Ag/TiO2[J]. Fuel, 2016, 183: 550-556.
[10]DENG L, XIE Y, ZHANG G. Sythesis of C-Cl-codoped titania/attapulgite composites with enhanced visible-light photocatalytic activity[J]. Chinese Journal of Catalysis, 2017, 38: 379-388.
[11]QI K, LIU S, QIU M. Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects[J]. Chinese Journal of Catalysis, 2018, 39: 867-875.
[12]HIRAKAWA T, NOSAKA Y. Properties of O2-· and OH· formed in TiO2 aqueous suspensions by photo-catalytic reaction and influence of H2O2 and some ions[J]. Lanngmuir, 2002, 18: 3247-3254.
[13]LI M, ZHANG M, BI X. Preparation of Y-doped TiO2 photo-catalysts with microwave irradiation in ionic liquid and microwave enhanced photo-catalytic activity[J]. Chemical Research, 2016, 27(2): 234-240.
[14]LI Y, YAN L, JIANG B. Simple way to enhance the photocatalytic activity and application in antireflective coatings for amorphous TiO2[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(9): 1701-1709.
[15]LAMPIMAKI M, SCHREIBER S, ZELENAY V, et al. Exploring the environmental photochemistry on the TiO2(110)surface in situ by near ambient pressure X-ray photoelectron spectroscopy[J]. Journal of Physical Chemistry C, 2015, 119(13): 7076-7085.
[16]KIPREOS M D, FOSTER M. Water interactions on the surface of 50 nm rutile TiO2 nanoparticles using in situ DRIFTS[J]. Surface Science, 2018, 677: 1-7.
[17]SONG H, WANG D, MU J. Effects of toluene and pyridine on the desulfurization properties of Ag/TiO2-NaY [J]. ACTA Petrolei Sinica(Petroleum Processing Section), 2012, 28(6): 920-926.
[18]HUSSAIN A H M S, TATARCHUK B J. Mechanism of hydrocarbon fuel desulfurization using Ag/TiO2-Al2O3 adsorbent[J]. Fuel Processing Technology, 2014, 126: 233-242.
[19]SONG L, HU Y, QIN Y, et al. Mechanism of effects of surface acidity on performance of adsorption desulfurization of NiY zeolites[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1082-1088.
[20]THOMPSON T L, PANAYOTOV D A, YATES J T. Adsorption and thermal decomposition of 2-chloroethyl ethyl sulfide on TiO2 surface[J]. Journal of Physical Chemistry B, 2004, 108: 16825-16833.

备注/Memo

备注/Memo:
收稿日期:2020-09-24。
基金项目:国家自然科学基金资助项目(21706017); 江苏省绿色催化材料与技术实验室开放课题基金资助项目(BM2012110)。
作者简介:孙雪妮(1986—),女,江苏苏州人,博士,讲师。通信联系人:韶晖(1969—),E-mail:shaohui200800@cczu.edu.cn
更新日期/Last Update: 1900-01-01