[1]席仁强,蒋学东,何云松,等.风力发电机的一致概率风-地震作用组合方法[J].常州大学学报(自然科学版),2020,32(06):83-90.[doi:10.3969/j.issn.2095-0411.2020.06.013]
 XI Renqiang,JIANG Xuedong,HE Yunsong,et al.Uniform-Probability Wind-Seismic Load Combination Method of Wind Turbines[J].Journal of Changzhou University(Natural Science Edition),2020,32(06):83-90.[doi:10.3969/j.issn.2095-0411.2020.06.013]
点击复制

风力发电机的一致概率风-地震作用组合方法()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第32卷
期数:
2020年06期
页码:
83-90
栏目:
机械制造及其自动化
出版日期:
2020-11-28

文章信息/Info

Title:
Uniform-Probability Wind-Seismic Load Combination Method of Wind Turbines
文章编号:
2095-0411(2020)06-0083-08
作者:
席仁强蒋学东何云松班书昊
常州大学 机械工程学院,江苏 常州 210416
Author(s):
XI RenqiangJIANG XuedongHE YunsongBAN Shuhao
School of Mechanical Engineering, Changzhou University, Changzhou 213164, China
关键词:
风力发电机 地震危险性分析 一致概率风-地震组合 结构动力响应 输入地震动方向
Keywords:
wind turbine seismic hazard analysis uniform-probability wind-seismic combination dynamic response of structure incident angles of earthquake waves
分类号:
TK 89
DOI:
10.3969/j.issn.2095-0411.2020.06.013
文献标志码:
A
摘要:
针对高地震危险性区域的风电场,提出一致概率风-地震作用组合方法。采用Weibull分布描述轮毂高度处平均风速随机特征; 通过地震危险性分析,确定地震动参数; 假定风、地震为独立事件,建立二者联合概率模型。随后,以NREL 5 MW风力发电机为例,基于一致概率风-地震作用组合,分析结构动力响应。结果表明:风-强震激励下,地震动控制结构响应; 风-弱震作用下,风-地震共同控制结构响应; 一致概率风-地震作用下,结构动力响应特征与地震动特性有关。
Abstract:
A uniform-probability wind-seismic combination method is established for the wind farms in the high seismic-hazard region. Weibull distribution is selected to describe the stochastic behavior of the mean wind speed at hub-height in this study. Based on the seismic hazard analysis, probabilistic model of ground motion is established. Assuming that winds and seismic,are independent events,a joint probabilistic model of wind and seismic is set up. Taking the NREL 5 MW wind turbine for example, dynamic response is analyzed based on this wind-seismic combination model. The result shows that under the excitation of wind and strong seismic combination, dynamic response of wind turbines is dominated by seismic wave while it is regulated by wind and seismic jointly under excitation of wind and weak earthquake. The dynamic behavior of wind turbine is connected with the characteristics of seismic wave under the excitation of uniform-probability wind seismic combination.

参考文献/References:


[1]ZHAO X, MAI?ER P. Seismic response analysis of wind turbine towers including soil structure interaction[J]. Proceedings of the Institution of Mechanical Engineers Part K Journal of Multibody Dynamics, 2006, 220(1): 53-61.
[2]金鑫, 王磊, 刘桦. 大功率风力发电机地震动力学建模及载荷计算[J]. 工程力学, 2012, 29(5): 224-229.
[3]何玉林, 王磊, 杜静, 等. 地震作用下的风电机组振动仿真分析[J]. 太阳能学报, 2012, 33(2): 179-184.
[4]彭超. 风力发电机组地震动力响应分析[J]. 太阳能学报, 2016, 37(12): 3189-3194.
[5]YANG Y, YE K, LI C, et al. Dynamic behavior of wind turbines influenced by aerodynamic damping and earthquake intensity[J]. Wind Energy, 2018, 21(1): 1-17.
[6]ASAREH M A, SCHONBERG W, VOLZ J. Effects of seismic and aerodynamic load interaction on structural dynamic response of multi-megawatt utility scale horizontal axis wind turbines[J]. Renewable Energy, 2016, 86: 49-58.
[7]PROWELL I. An experimental and numerical study of wind turbine seismic behavior[D]. San Diego: University of California, 2011.
[8]KIYOMIYA O, RIKIJI T, VAN GELDER P. Dynamic response analysis of onshore wind energy power units during earthquakes and wind[C]//Proceedings of the 12th International Offshore and Polar Engineering Conference. Kitakyushu: International Society of Offshore and Polar Engineers, 2002.
[9]MENSAH A F, DUENAS-OSORIO L, PROWELL I, et al. Probabilistic combination of earthquake and operational loads for wind turbines[C]//Proceedings of the 15th World Conference of Earthquake Engineering. Lisboa: Portugal, 2012.
[10]JONKMAN J M. TurbSim user’s guide: version 1.50[R]. Golden: National Renewable Energy Laboratory, 2009.
[11]MARDFEKRI M, GARDONI P. Multi-hazard reliability assessment of offshore wind turbines[J]. Wind Energy, 2015, 18(8):1433-1450.
[12]中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011-2011[S]. 北京: 中国建筑工业出版社, 2010.
[13]ARCHER C L, JACOBSON M Z. Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements[J]. Journal of Geophysical Research Atmospheres, 2003, 108(9): 469-474.
[14]MANWELL J F, MCGOWAN J G, ROGERS A L. Wind energy explained: theory, design and application [M]. Chichester: John Wiley & Sons, 2006: 30-68.
[15]IEC. Wind turbines part 1: design requirements[S]. Geneva: International Electrotechnical Commission, 2005.
[16]JONKMAN J M, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5 MW reference wind turbine for offshore system development[R]. Golden: National Renewable Energy Laboratory, 2009.
[17]胡聿贤. 地震工程学[M]. 北京: 地震出版社, 2006.
[18]CAMPBELL K W, BOZORGNIA Y. NGA-West2 Campbell-Bozorgnia ground motion model for the horizontal components of PGA, PGV, and 5%-damped elastic pseudo-acceleration response spectra for periods ranging from 0. 01 to 10 sec[J]. Earthquake Spectra, 2014, 30(3): 1087-1115.
[19]VALAMANESH V, MYERS A T. Aerodynamic damping and seismic response of horizontal axis wind turbine towers[J]. Journal of Structural Engineering, 2014, 140(11): 1-9.
[20]YUAN C Y, CHEN J Y, LI J, et al. Fragility analysis of large-scale wind turbines under the combination of seismic and aerodynamic loads[J]. Renewable Energy, 2017, 113: 1122-1134.

备注/Memo

备注/Memo:
收稿日期:2020-08-01。
基金项目:国家自然科学基金资助项目(51808061)。
作者简介:席仁强(1984—),男,河南三门峡人,硕士,讲师。E-mail: xirenqiang@cczu.edu.cn
更新日期/Last Update: 1900-01-01