[1]操乐成,蒋绿林,王彦龙,等.基于多能源互补蓄联水环热泵供暖系统研究[J].常州大学学报(自然科学版),2020,32(06):91-96.[doi:10.3969/j.issn.2095-0411.2020.06.014]
 CAO Lecheng,JIANG Lyulin,WANG Yanlong,et al.Research on Water Ring Heat Pump Heating System Based on Multi-Energy Complementary Storage[J].Journal of Changzhou University(Natural Science Edition),2020,32(06):91-96.[doi:10.3969/j.issn.2095-0411.2020.06.014]
点击复制

基于多能源互补蓄联水环热泵供暖系统研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第32卷
期数:
2020年06期
页码:
91-96
栏目:
机械制造及其自动化
出版日期:
2020-11-28

文章信息/Info

Title:
Research on Water Ring Heat Pump Heating System Based on Multi-Energy Complementary Storage
文章编号:
2095-0411(2020)06-0091-06
作者:
操乐成蒋绿林王彦龙孙誉桐
常州大学 石油工程学院,江苏 常州 213164
Author(s):
CAO Lecheng JIANG Lyulin WANG Yanlong SUN Yutong
School of Petroleum Engineering, Changzhou University, Changzhou 213164, China
关键词:
水环热泵 多能源互补 相变储能调节
Keywords:
water loop heat pump multi-energy complementary phase change energy storage regulation
分类号:
TK 8
DOI:
10.3969/j.issn.2095-0411.2020.06.014
文献标志码:
A
摘要:
设计了一套针对北方地区农村住宅的多能源互补蓄联水环热泵清洁供暖系统,系统由低温热源、水环管网和户用水源热泵主机组成,由太阳能集热器和空气源热泵提供低温热源,经相变储能装置恒温调节。经现场测试,系统运行稳定,对能耗与系统制热量实验整理数据得,在晴天工作能效比高达4.7,阴天能效比为3.6,解决了一般空气源热泵与建筑负荷不匹配、除霜带来运行波动等问题,系统运行稳定,具有推广价值。
Abstract:
A set of multi energy complementary storage water loop heat pump heating system was designed for rural houses in northern China. The system is composed of low-temperature heat source, water loop pipe network and household water source heat pump. The low-temperature heat source is provided by solar collector and air source heat pump, and is regulated by phase change energy storage device at a constant temperature. The field test shows that system runs stably, and that the EER is as high as 4.7 on sunny days and 3.6 on cloudy days. It solves the problems of mismatch between air source heat pump and building load and operation fluctuation caused by defrosting. The system runs stably and has promotion value.

参考文献/References:


[1]姚杨, 马最良. 水环热泵空调系统在我国应用中应注意的几个问题[J]. 流体机械, 2002, 30(9): 59-61.
[2]常茹, 于齐东, 朱能. 基于能级理论的水环热泵系统节能性分析[J]. 中南大学学报(自然科学版), 2014, 45(3): 847-854.
[3]徐菱虹, 卢琼华, 胡平放, 等. 水环热泵空调系统的经济性研究[J]. 流体机械, 2008, 36(2): 69-73.
[4]CHOI J M, PARK Y J, KANG S H. Temperature distribution and performance of ground-coupled multi-heat pump systems for a greenhouse[J]. Renewable Energy, 2014, 65(5): 49-55.
[5]高留花, 赵军, 高腾. 吸热板参数对平板太阳集热器热性能的影响[J]. 太阳能学报, 2014, 35(10): 2054-2059.
[6]杨世铭, 陶文栓. 传热学[M]. 4版. 北京:高等教育出版社. 2006: 268-269.
[7]张国昊, 徐文华. 空气源热泵与水环热泵冬季联合供热运行节能性分析[J]. 制冷技术, 2008(2): 13-16.
[8]卢琼华, 徐菱虹, 胡平放, 等. 水环热泵空调系统的适用性研究[J]. 流体机械, 2008, 36(3): 63-66.
[9]MARRIOTT J. Where and how to use plate heat exchangers[J]. Chemical Engineering, 1971,78(8): 127-133.
[10]KUANG Y H, SUMATHY K, WANG R Z. Study on a direct-expansion solar-assisted heat pump water heating system[J]. International Journal of Energy Research, 2003, 27(5): 531-548.
[11]ZHU J, SUN Y, WANG W, et al. A novel Temperature-Humidity-Time defrosting control method based on a frosting map for air-source heat pumps[J]. International Journal of Refrigeration, 2015, 54: 45-54.
[12]王庆, 王培红. 太阳能热泵热水系统[J]. 上海节能, 2008, 15(8): 12-16.
[13]KARAGOZ S, YILMAZ M, COMAKLI O. R134a and various mixtures of R22/R134a as an alternative to R22 in vapour compression heat pumps[J]. Energy Conversion and Management, 2004, 45(2): 181-196.
[14]MEHRPOOYA M, HEMMATABADY H, AHMADI M H. Optimization of performance of Combined Solar Collector-Geothermal Heat Pump Systems to supply thermal load needed for heating greenhouses[J]. Energy Conversion and Management, 2015, 97(12): 382-392.

备注/Memo

备注/Memo:
收稿日期:2020-10-18。
作者简介:操乐成(1995—),男,江苏南京人,硕士生。通信联系人:蒋绿林(1965—),E-mail:51green@163.com
更新日期/Last Update: 1900-01-01