[1]左士祥,曹晓曼,刘 展,等.CdS修饰TiO2棒阵列/导电云母复合材料及其光阴极保护性能[J].常州大学学报(自然科学版),2021,33(04):1-7.[doi:10.3969/j.issn.2095-0411.2021.04.001]
 ZUO Shixiang,CAO Xiaoman,LIU Zhan,et al.CdS Modified TiO2 Nanorod ArrayConductive Mica and Their Photocathodic Protection Performance[J].Journal of Changzhou University(Natural Science Edition),2021,33(04):1-7.[doi:10.3969/j.issn.2095-0411.2021.04.001]
点击复制

CdS修饰TiO2棒阵列/导电云母复合材料及其光阴极保护性能()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第33卷
期数:
2021年04期
页码:
1-7
栏目:
材料科学与工程:复合材料专题
出版日期:
2021-07-28

文章信息/Info

Title:
CdS Modified TiO2 Nanorod ArrayConductive Mica and Their Photocathodic Protection Performance
文章编号:
2095-0411(2021)04-0001-07
作者:
左士祥12 曹晓曼1 刘 展1 刘文杰1 李霞章1 姚 超12
(1. 常州大学 石油化工学院, 江苏 常州 213164; 2. 常州大学盱眙凹土研发中心, 江苏 盱眙 211700)
Author(s):
ZUO Shixiang12 CAO Xiaoman1 LIU Zhan1 LIU Wenjie1 LI Xiazhang1 YAO Chao12
(1. School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; 2. Research & Development Center of Xuyi Attapulgite Applied Technology, Changzhou University, Xuyi 211700, China)
关键词:
TiO2 纳米棒阵列 纳米硫化镉 异质结构 光阴极保护 防腐
Keywords:
TiO2 nanorod array nano-CdS heterostructure photocathodic protection anticorrosion
分类号:
TB 332
DOI:
10.3969/j.issn.2095-0411.2021.04.001
文献标志码:
A
摘要:
通过水热法, TiO2 纳米棒生长在片状导电云母核体表面成功合成了TiO2 纳米棒/导电云母复合材料(TiO2 NRA/C-mica)。为提高TiO2 NRA的光响应能力, 通过溶液浸渍法在TiO2 NRA上负载硫化镉纳米粒子(CdS NPs)制备出CdS修饰TiO2 NRA/C-mica复合材料。通过XRD,SEM,UV-Vis,PL和光电化学等技术对所制得的复合材料进行表征。结果表明, CdS NP均匀负载于TiO2 NRA上形成了异质结构, 有效拓宽了TiO2 NRA/C-mica的可见光响应范围和光生电子-空穴的分离效率; CdS NP(8)/TiO2 NRA/C-mica具有较佳的光电化学性能。与TiO2 NRA/C-mica相比, CdS NP(8)/TiO2 NRA/C-mica复合材料的光电流密度提高0.9倍, 电位降高出300 mV(vs. SCE), 对304不锈钢具有优异的光阴极保护性能和防腐效果。
Abstract:
TiO2 nanorod arrays(TiO2 NRA)were grown on the conductive mica(C-mica)by the hydrothermal method to successfully prepare TiO2 NRA/C-mica. For the enhancement of the light response capacity of TiO2 NRA, CdS nanoparticles(CdS NPs)were further loaded on the surface of TiO2 NRA by the solution impregnation to fabricate CdS NP modifed TiO2 NRA/C-mica. The obtained samples were characterized by XRD, SEM, UV- Vis, PL and photochemical techniques. The results show that CdS NPs are uniformly loaded on the surface of TiO2 NRA to generate heterostructure, which effectively broadens the response range of the visible light and improves the separation efficiency of the photo-induced electron-hole for CdS modifed TiO2 NRA/C-mica. The obtained composites impregnated 8 times have better photoelectrochemical performance. The photocurrent density of CdS NP(8)/TiO2 NRA/C-mica increases by 0.9 times and the potential drop is 300 mV(vs.SCE)higher than those of TiO2 NRA/C-mica. CdS NP(8)/TiO2 NRA/C-mica is found to possess excellent photocathodic protection and anticorrosion for the 304SS.

参考文献/References:

[1]BU Y Y, AO J P. A review on photoelectrochemical cathodic protection semiconductor thin films for metals[J]. Green Energy & Environment, 2017, 2(4): 331-362.
[2]SUN M M, CHEN Z Y, BU Y Y. Enhanced photoelectrochemical cathodic protection performance of H2O2-treated In2O3 thin-film photoelectrode under visible light[J]. Surface and Coatings Technology, 2015, 226: 79-87.
[3]JING J P, CHEN Z Y, BU Y Y, et al. Photoelectrochemical cathodic protection induced from nanoflower-structured WO3 sensitized with CdS nanoparticles[J]. Journal of the Electrochemical Society, 2016, 163(14): C928-C936.
[4]JING J P, CHEN Z Y, BU Y Y. Visible light induced photoelectrochemical cathodic protection for 304SS by In2S3-sensitized ZnO nanorod array[J]. International Journal of Electrochemical Science, 2015, 10(10): 8783-8796.
[5]JING J P, SUN M M, CHEN Z Y, et al. Enhanced photoelectrochemical cathodic protection performance of the secondary reduced graphene oxide modified graphitic carbon nitride[J]. Journal of the Electrochemical Society, 2017, 164(13): C822-C830.
[6]LI J, LIN C J, LIN C G. A photoelectrochemical study of highly ordered TiO2 nanotube arrays as the photoanodes for cathodic protection of 304 stainless steel[J]. Journal of the Electrochemical Society, 2011, 158(3): 55-62.
[7]LI Q, LI X,WAGEH S, et al. CdS/graphene nanocomposite photocatalysts[J]. Advanced Energy Materials, 2015, 5(14): 1-28.
[8]IJAZ S, EHSAN M F, ASHIQ M N, et al. Preparation of CdS@CeO2 core/shell composite for photocatalytic reduction of CO2 under visible-light irradiation[J]. Applied Surface Science, 2016, 390: 550-559.
[9]MA S, XIE J, WEN J Q, et al. Constructing 2D layered hybrid CdS nanosheets/MoS2 heterojunctions for enhanced visible-light photocatalytic H2 generation[J]. Applied Surface Science, 2017, 391: 580-591.
[10]DU Y B, ZHANG L, RUAN M, et al. Template-free synthesis of three-dimensional porous CdS/TiO2 with high stability and excellent visible photocatalytic activity[J]. Materials Chemistry and Physics, 2018, 212: 69-77.
[11]BOONSERM A, KRUEHONG C, SEITHTANABUTARA V, et al. Photoelectrochemical response and corrosion behavior of CdS/TiO2 nanocomposite films in an aerated 0.5 M NaCl solution[J]. Applied Surface Science, 2017, 149: 933-941.
[12]ZHANG W W, GUO H L, SUN H Q, et al. Hydrothermal synthesis and photoelectrochemical performance enhancement of TiO2/graphene composite in photo-generated cathodic protection[J]. Applied Surface Science, 2016, 382: 128-134.
[13]DU Y B, ZHANG L, RUAN M, et al. Template-free synthesis of three-dimensional porous CdS/TiO2 with high stability and excellent visible photocatalytic activity[J]. Materials Chemistry and Physics, 2018, 212: 69-77.
[14]ZHAO H X, CUI S, YANG L, et al. Synthesis of hierarchically meso-macroporous TiO2/CdS heterojunction photocatalysts with excellent visible-light photocatalytic activity[J]. Journal of Colloid and Interface Science, 2018, 512: 47-54.
[15]CHANG C H, HUANG T C, PENG C W,et al. Novel anticorrosion coatings prepared from polyaniline/graphene composites[J]. Carbon, 2012, 50(14), 5044-5051.
[16]ZHANG W W, GUO H L, SUN H Q, et al. Constructing ternary polyaniline-graphene-TiO2 hybrids with enhanced photoelectrochemical performance in photo-generated cathodic protection[J]. Applied Surface Science, 2017, 410: 547-556.
[17]HU J, LIU Q, ZHANG H, et al. Facile ultrasonic deposition of SnO2 nanoparticles on TiO2 nanotube films for enhanced photoelectrochemical performances[J]. Journal of Materials Chemistry A, 2015, 3(45): 22605-22613.

备注/Memo

备注/Memo:
收稿日期:2020-12-08。基金项目:江苏省重点研发计划(产业前瞻与共性关键技术)(BE 2018100); 淮安市自然科学研究计划(HAB 201952)。作者简介:左士祥(1984—), 男, 江苏泗阳人, 博士, 副研究员。E-mail: zuoshixiang@cczu.edu.cn
更新日期/Last Update: 1900-01-01