参考文献/References:
[1]BRUS V V, LEE J, LUGINBUHL B R, et al. Solution processed semitransparent organic photovoltaics: from molecular design to device performance[J]. Advanced Materials, 2019, 31(30): e1900904.
[2]CHEN H Y, HU D Q, YANG Q G, et al. All-small-molecule organic solar cells with an ordered liquid crystalline donor[J]. Joule, 2019, 3(12): 3034-3047.
[3]GAO K, JO S B, SHI X L, et al. Over 12% efficiency nonfullerene all-small-molecule organic solar cells with sequentially evolved multilength scale morphologies[J]. Advanced Materials, 2019, 31(12): 1807842.
[4]LI X X, WANG Y, ZHU Q L, et al. A small molecule donor containing a non-fused ring core for all-small-molecule organic solar cells with high efficiency over 11%[J]. Journal of Materials Chemistry A, 2019, 7(8): 3682-3690.
[5]WU H, FAN H J, XU S J, et al. Isomery-dependent miscibility enables high-performance all-small-molecule solar cells[J]. Small, 2019, 15(1): e1804271.
[6]CUI Y, YAO H F, ZHANG J Q, et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages[J]. Nature Communications, 2019, 10(1): 2515.
[7]FAN B B, ZHANG D F, LI M J, et al. Achieving over 16% efficiency for single-junction organic solar cells[J]. Science China-Chemistry, 2019, 62(6): 746-752.
[8]MENG L X, ZHANG Y M, WAN X J, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency[J]. Science, 2018, 361(6407): 1094-1098.
[9]SUN H L, LIU T, YU J W, et al. A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency[J]. Energy & Environmental Science, 2019, 12(11): 3328-3337.
[10]MA R J, LIU T, LUO Z H, et al. Improving the open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells with efficiencies over 17%[J]. Science China-Chemistry, 2020, 63(3): 325-333.
[11]ZHOU Z C, LIU W R, ZHOU G Q, et al. Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation[J]. Advanced Materials, 2020, 32(4): 1906324.
[12]XU X P, FENG K, BI Z Z, et al. Single-junction polymer solar cells with 16.35% efficiency enabled by a platinum(II)complexation strategy[J]. Advanced Materials, 2019, 31(29): 1901872.
[13]HONG L, YAO H F, WU Z A, et al. Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency[J]. Advanced Materials, 2019, 31(39): e1903441.
[14]LIU Q, JIANG Y, JIN K. 18% efficiency organic solar cells[J]. Science Bulletin, 2019, 64(8): 504-506.
[15]CUI C H, WONG W Y, LI Y F. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution[J]. Energy & Environmental Science, 2014, 7(7): 2276-2284.
[16]YE L, ZHANG S Q, ZHAO W C, et al. Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain[J]. Chemistry of Materials, 2014, 26(12): 3603-3605.
[17]ZHANG S Q, YE L, ZHAO W C, et al. Realizing over 10% efficiency in polymer solar cell by device optimization[J]. Science China-Chemistry, 2015, 58: 248-256.
[18]YAO H F, ZHAO W C, ZHENG Z, et al. PBDT-TSR: a highly efficient conjugated polymer for polymer solar cells with a regioregular structure[J]. Journal of Materials Chemistry A, 2016, 4(5): 1708-1713.
[19]CHAO P J, WANG H, QU S W, et al. From semi- to sull-two-dimensional conjugated side-chain design: a way toward comprehensive solar energy absorption[J]. Macromolecules, 2017, 50(24): 9617-9625.
[20]CHANG C M, LI W B, GUO X, et al. A narrow-bandgap donor polymer for highly efficient as-cast non-fullerene polymer solar cells with a high open circuit voltage[J]. Organic Electronics, 2018, 58: 82-87.
[21]LI G D, LI W B, GUO X, et al. A new narrow bandgap polymer as donor material for high performance nonfullerene polymer solar cells[J]. Organic Electronics, 2019, 64: 241-246.
[22]TAN H, WU B Q, ZHANG J, et al. High-performance asymmetric small molecular donor materials based on indenothiophene for solution-processed organic solar cells[J]. Journal of Energy Chemistry, 2019, 31: 27-33.
[23]WANG J X, XIAO M J, CHEN W C, et al. Extending π-conjugation system with benzene: an effective method to improve the properties of benzodithiophene-based polymer for highly efficient organic solar cells[J]. Macromolecules, 2014, 47(22): 7823-7830.