[1]谭 华,谭弘毅,于俊婷,等.新型苯并二噻吩类聚合物供体材料合成及其光伏性能研究[J].常州大学学报(自然科学版),2021,33(05):35-42.[doi:10.3969/j.issn.2095-0411.2021.05.005]
 TAN Hua,TAN Hongyi,YU Junting,et al.Synthesis and Photovoltaic Properties of Novel Benzodithiophene-Based Polymeric Donor Materials[J].Journal of Changzhou University(Natural Science Edition),2021,33(05):35-42.[doi:10.3969/j.issn.2095-0411.2021.05.005]
点击复制

新型苯并二噻吩类聚合物供体材料合成及其光伏性能研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第33卷
期数:
2021年05期
页码:
35-42
栏目:
材料科学与工程
出版日期:
2021-09-28

文章信息/Info

Title:
Synthesis and Photovoltaic Properties of Novel Benzodithiophene-Based Polymeric Donor Materials
文章编号:
2095-0411(2021)05-0035-08
作者:
谭 华12 谭弘毅2 于俊婷1 郑祥均1 朱卫国1
(1. 常州大学 材料科学与工程学院, 江苏 常州 213164; 2. 湘潭大学 化学学院, 湖南 湘潭 411105)
Author(s):
TAN Hua12 TAN Hongyi2 YU Junting1 ZHENG Xiangjun1 ZHU Weiguo1
(1. School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; 2. College of Chemistry, Xiangtan University, Xiangtan 411105, China)
关键词:
有机太阳能电池 聚合物供体材料 苯并二噻吩 氟取代噻吩[34-b]噻吩单元
Keywords:
organic solar cells polymer donor materials benzodithiophene fluoro-substituted thiophene[34-b]thiophene
分类号:
O 472; O 626.12
DOI:
10.3969/j.issn.2095-0411.2021.05.005
文献标志码:
A
摘要:
以刚性平面结构的苯并二噻吩(BDT)为给电子单元和具有稳定醌类结构的氟(F)取代噻吩[3,4-b]噻吩单元(TT)为受电子单元设计合成了两种窄带隙的聚合物供体材料。系统研究了侧链取代单元结构对聚合物供体材料光物理性能, 电化学性能, 活性层形貌和光伏性能影响。研究表明: 相对于基于6-取代苯并噻吩侧链的聚合物供体材料PBDTBTs-TT, 2-取代苯并噻吩侧链的聚合物供体材料PBDTTBs-TT具有更宽的光子捕获范围和更强的吸光能力, 这有利于提高光伏器件的短路电流。以IT-4F为受体材料, 基于PBDTBTs-TT: IT-4F的光伏器件能量转换效率和短路电流分别为6.43%和14.21 mA·cm-2; 而基于PBDTTBs-TT: IT-4F的光伏器件能量转换效率和短路电流提高到了7.06%和15.32 mA·cm-2
Abstract:
Two kinds of polymer donor materials based on the rigid and planar benzodithiophene units and fluoro-substituted thiophene[3,4-b]thiophene units were designed and synthesized. The photophysical and electrochemical properties, morphology of active layers, and photovoltaic properties of two polymer donor materials were systematically studied. Compared to PBDTBTs-TT(with 6-position of benzothiophene substituent), PBDTTBs-TT(with 2-position of benzothiophene substituent)exhibited an enhanced photon capture capabilities, thereby increasing the short-circuit current of the devices. With IT-4F as the acceptor material, the energy conversion efficiency and short-circuit current can be improved from 6.43% and 14.21 mA/cm2 for PBDTBTs-TT:IT-4F to 7.06% and 15.32 mA/cm2for PBDTTBs-TT:IT-4F, respectively.

参考文献/References:

[1]BRUS V V, LEE J, LUGINBUHL B R, et al. Solution processed semitransparent organic photovoltaics: from molecular design to device performance[J]. Advanced Materials, 2019, 31(30): e1900904.
[2]CHEN H Y, HU D Q, YANG Q G, et al. All-small-molecule organic solar cells with an ordered liquid crystalline donor[J]. Joule, 2019, 3(12): 3034-3047.
[3]GAO K, JO S B, SHI X L, et al. Over 12% efficiency nonfullerene all-small-molecule organic solar cells with sequentially evolved multilength scale morphologies[J]. Advanced Materials, 2019, 31(12): 1807842.
[4]LI X X, WANG Y, ZHU Q L, et al. A small molecule donor containing a non-fused ring core for all-small-molecule organic solar cells with high efficiency over 11%[J]. Journal of Materials Chemistry A, 2019, 7(8): 3682-3690.
[5]WU H, FAN H J, XU S J, et al. Isomery-dependent miscibility enables high-performance all-small-molecule solar cells[J]. Small, 2019, 15(1): e1804271.
[6]CUI Y, YAO H F, ZHANG J Q, et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages[J]. Nature Communications, 2019, 10(1): 2515.
[7]FAN B B, ZHANG D F, LI M J, et al. Achieving over 16% efficiency for single-junction organic solar cells[J]. Science China-Chemistry, 2019, 62(6): 746-752.
[8]MENG L X, ZHANG Y M, WAN X J, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency[J]. Science, 2018, 361(6407): 1094-1098.
[9]SUN H L, LIU T, YU J W, et al. A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency[J]. Energy & Environmental Science, 2019, 12(11): 3328-3337.
[10]MA R J, LIU T, LUO Z H, et al. Improving the open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells with efficiencies over 17%[J]. Science China-Chemistry, 2020, 63(3): 325-333.
[11]ZHOU Z C, LIU W R, ZHOU G Q, et al. Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation[J]. Advanced Materials, 2020, 32(4): 1906324.
[12]XU X P, FENG K, BI Z Z, et al. Single-junction polymer solar cells with 16.35% efficiency enabled by a platinum(II)complexation strategy[J]. Advanced Materials, 2019, 31(29): 1901872.
[13]HONG L, YAO H F, WU Z A, et al. Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency[J]. Advanced Materials, 2019, 31(39): e1903441.
[14]LIU Q, JIANG Y, JIN K. 18% efficiency organic solar cells[J]. Science Bulletin, 2019, 64(8): 504-506.
[15]CUI C H, WONG W Y, LI Y F. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution[J]. Energy & Environmental Science, 2014, 7(7): 2276-2284.
[16]YE L, ZHANG S Q, ZHAO W C, et al. Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain[J]. Chemistry of Materials, 2014, 26(12): 3603-3605.
[17]ZHANG S Q, YE L, ZHAO W C, et al. Realizing over 10% efficiency in polymer solar cell by device optimization[J]. Science China-Chemistry, 2015, 58: 248-256.
[18]YAO H F, ZHAO W C, ZHENG Z, et al. PBDT-TSR: a highly efficient conjugated polymer for polymer solar cells with a regioregular structure[J]. Journal of Materials Chemistry A, 2016, 4(5): 1708-1713.
[19]CHAO P J, WANG H, QU S W, et al. From semi- to sull-two-dimensional conjugated side-chain design: a way toward comprehensive solar energy absorption[J]. Macromolecules, 2017, 50(24): 9617-9625.
[20]CHANG C M, LI W B, GUO X, et al. A narrow-bandgap donor polymer for highly efficient as-cast non-fullerene polymer solar cells with a high open circuit voltage[J]. Organic Electronics, 2018, 58: 82-87.
[21]LI G D, LI W B, GUO X, et al. A new narrow bandgap polymer as donor material for high performance nonfullerene polymer solar cells[J]. Organic Electronics, 2019, 64: 241-246.
[22]TAN H, WU B Q, ZHANG J, et al. High-performance asymmetric small molecular donor materials based on indenothiophene for solution-processed organic solar cells[J]. Journal of Energy Chemistry, 2019, 31: 27-33.
[23]WANG J X, XIAO M J, CHEN W C, et al. Extending π-conjugation system with benzene: an effective method to improve the properties of benzodithiophene-based polymer for highly efficient organic solar cells[J]. Macromolecules, 2014, 47(22): 7823-7830.

备注/Memo

备注/Memo:
收稿日期:2021-05-26。基金项目:国家自然科学基金资助项目(51403178, 51573154)。作者简介:谭华(1984—), 男, 湖南衡阳人, 博士, 副教授。通信联系人: 朱卫国(1964—), E-mail: zhuwg18@126.com
更新日期/Last Update: 1900-01-01