[1]冯珊珊,郑 伟,丽嘉颖,等.ZIF-8薄膜的制备及其去除刚果红染料废水的研究[J].常州大学学报(自然科学版),2021,33(05):59-68.[doi:10.3969/j.issn.2095-0411.2021.05.008]
 FENG Shanshan,ZHENG Wei,LI Jiaying,et al.Preparation of ZIF-8 Film for the Treatment of Congo Red Dye Wastewater[J].Journal of Changzhou University(Natural Science Edition),2021,33(05):59-68.[doi:10.3969/j.issn.2095-0411.2021.05.008]
点击复制

ZIF-8薄膜的制备及其去除刚果红染料废水的研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第33卷
期数:
2021年05期
页码:
59-68
栏目:
环境科学与工程
出版日期:
2021-09-28

文章信息/Info

Title:
Preparation of ZIF-8 Film for the Treatment of Congo Red Dye Wastewater
文章编号:
2095-0411(2021)05-0059-10
作者:
冯珊珊12 郑 伟1 丽嘉颖1 陈 风1 汪留建1 冯 胜1
(1. 常州大学 环境与安全工程学院, 江苏 常州213164; 2. 江苏省石油化工安全与环保工程研究中心(常州大学), 江苏 常州 213164)
Author(s):
FENG Shanshan12 ZHENG Wei1 LI Jiaying1 CHEN Feng1 WANG Liujian1 FENG Sheng1
(1. School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China; 2. Jiangsu Petrochemical Safety and Environmental Protection Engineering Research Center, Changzhou University, Changzhou 213164, China)
关键词:
ZIF-8薄膜 原位引晶 刚果红 吸附
Keywords:
ZIF-8 film in situ growth Congo red adsorption
分类号:
X 703
DOI:
10.3969/j.issn.2095-0411.2021.05.008
文献标志码:
A
摘要:
用六水合硝酸锌、 二甲基咪唑、 聚乙烯亚胺为原料, 通过原位引晶技术以氧化铝膜为基体制备ZIF-8薄膜。研究了ZIF-8薄膜去除刚果红染料废水的性能。利用扫描电镜、 傅里叶红外光谱与晶体衍射等表征分析,结果表明, ZIF-8成功生长到氧化铝膜片表面。通过单因素变量法探究初始质量浓度、 pH、 时间、 温度等因素对刚果红染料处理的影响及其反应机制。结果显示, 在刚果红染料质量浓度为300 mg/L、 pH=7的条件下,ZIF-8薄膜的吸附量为535.83 mg/g; 反应平衡时间为240 min, 其中准二级动力方程模型和Freundlich等温线模型更适合用来描述ZIF-8薄膜对刚果红的吸附过程; 吸附过程是自发放热过程。ZIF-8薄膜作为吸附剂去除刚果红染料具有广阔的应用前景。
Abstract:
Using zinc nitrate hexahydrate, dimethylimidazole and polyethylenimine as raw materials, ZIF-8 film was prepared with alumina film as substrate by in situ primer technology to treat Congo red dye wastewater. Scanning electron microscopy, Fourier transform infrared spectroscopy and crystal diffraction results indicated that ZIF-8 has been grew on the surface of the alumina membrane. The influence of initial concentration, pH, time, temperature and other factors on the treatment of Congo red dye and its reaction mechanism were investigated by using the single factor variable method. The results showed that the adsorption capacity of ZIF-8 film was 535.83 mg/g under the conditions of Congo red dye concentration of 300 mg/L and pH=7. The reaction equilibrium time was 240 min, and the quasi-second-order dynamic equation model and the Freundlich isotherm model were more suitable to describe the adsorption process of the Congo red dye by ZIF-8 film. The adsorption process is a spontaneous exothermic process. As an adsorbent, ZIF-8 film has broad application prospects in the removal of Congo red dyes.

参考文献/References:

[1]WANG X, JIANG C, HOU B, et al. Carbon composite lignin-based adsorbents for the adsorption of dyes[J]. Chemosphere, 2018, 206: 587-596.
[2]BEKTAS T E. Reduction dye in paint and construction chemicals wastewater by improved coagulation-flocculation process[J]. Water Science and Technology, 2017, 76(10): 2816-2820.
[3]RAVAL N P, SHAH P U, SHAH N K. Adsorptive amputation of hazardous azo dye Congo red from wastewater: a critical review[J]. Environmental Science and Pollution Research, 2016, 23(15): 14810-14853.
[4]PIASKOWSKI K, SWIDERSKA-DABROWSKA R, ZARZYCKI P K. Dye removal from water and wastewater using various physical, chemical, and biological processes[J]. Journal of Aoac International, 2018, 101(5): 1371-1384.
[5]SUGANYA S, KUMAR P S, SARAVANAN A, et al. Computation of adsorption parameters for the removal of dye from wastewater by microwave assisted sawdust: theoretical and experimental analysis[J]. Environmental Toxicology and Pharmacology, 2017, 50: 45-57.
[6]SHI J X, ZHANG B G, LIANG S, et al. Simultaneous decolorization and desalination of dye wastewater through electrochemical process[J]. Environmental Science and Pollution Research, 2018, 25(9): 8455-8464.
[7]PARVIN S, BISWAS B K, RAHMAN M A, et al. Study on adsorption of Congo red onto chemically modified egg shell membrane[J]. Chemosphere, 2019, 236: 124326.
[8]LITEFTI K, FREIRE M S, STITOU M, et al. Adsorption of an anionic dye(Congo red)from aqueous solutions by pine bark[J]. Scientific Reports, 2019, 9: 16530.
[9]SHI J H, YANG Z X, DAI H L, et al. Preparation and application of modified zeolites as adsorbents in wastewater treatment[J]. Water Science and Technology, 2018, 77: 621-635.
[10]SUH A S, GUPTA V K, CARROTT P J, et al. Cellulose: a review as natural, modified and activated carbon adsorbent[J]. Bioresource Technology, 2016, 216: 1066-1076.
[11]LAI K C, LEE L Y, HIEW B Y, et al. Environmental application of three-dimensional graphene materials as adsorbents for dyes and heavy metals: review on ice-templating method and adsorption mechanisms[J]. Journal of Environmental Sciences-China, 2019, 79: 174-199.
[12]MUSHTAQ F, ZAHID M, BHATTI I A. Possible applications of coal fly ash in wastewater treatment[J]. Journal of Environmental Management, 2019, 240: 27-46.
[13]JEONG G Y, SINGH A K, KIM M G, et al. Metal-organic framework patterns and membranes with heterogeneous pores for flow-assisted switchable separations[J]. Nature Communications, 2018, 9: 3968.
[14]LYU D F, WANG H, CHEN Y W, et al. Iron-based metal organic framework with hydrophobic quadrilateral channels for highly selective separation of hexane isomers[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 6031-6038.
[15]LIANG H X, JIAO X L, LI C, et al. Flexible self-supported metal-organic framework mats with exceptionally high porosity for enhanced separation and catalysis[J]. Journal of Materials Chemistry A, 2018, 6(2): 334-341.
[16]SALIBA D, AMMAR M, RAMMAL M, et al. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives[J]. Journal of the American Chemical Society, 2018, 140(5): 1812-1823.
[17]HU C, HUANG Y C, CHANG A L, et al. Amine functionalized ZIF-8 as a visible-light-driven photocatalyst for Cr-(VI)reduction[J]. Journal of Colloid and Interface Science, 2019, 553: 372-381.
[18]KHAN N A, JUNG B K, HASAN Z, et al. Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks[J]. Journal of Hazardous Materials, 2015, 282: 194-200.
[19]BALCIK-CANBOLAT C, SENGEZER C, SAKAR H, et al. Recovery of real dye bath wastewater using integrated membrane process: considering water recovery, membrane fouling and reuse potential of membranes[J]. Environmental Technology, 2017, 38(21): 2668-2676.
[20]BERA A, TRIVEDI J S, KUMAR S B, et al. Anti-organic fouling and anti-biofouling poly(piperazineamide)thin film nanocomposite membranes for low pressure removal of heavy metal ions[J]. Journal of Hazardous Materials, 2018, 343: 86-97.
[21]ZHENG G, CHEN Z, SENTOSUN K, et al. Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures[J]. Nanoscale, 2017, 9(43): 16645-16651.
[22]HU Y, KAZEMIAN H, ROHANI S, et al. In situ high pressure study of ZIF-8 by FTIR spectroscopy[J]. Chemical Communications, 2011, 47(47): 12694-12696.

备注/Memo

备注/Memo:
收稿日期:2021-06-28。基金项目:江苏省自然科学基金青年基金资助项目(BK20180964); 江苏省高等学校自然科学研究面上资助项目(18KJB610001)。作者简介:冯珊珊(1986—), 女, 黑龙江佳木斯人, 博士, 讲师。E-mail: shfeng@cczu.edu.cn
更新日期/Last Update: 1900-01-01