[1]刘 鹏,刘 莉,周政忠,等.垃圾渗滤液污泥的有机结构对热解行为的影响[J].常州大学学报(自然科学版),2021,33(05):69-76.[doi:10.3969/j.issn.2095-0411.2021.05.009]
 LIU Peng,LIU Li,ZHOU Zhengzhong,et al.Effect of Organic Structure on Pyrolysis Behavior of Sewage Sludge from Landfill Leachate[J].Journal of Changzhou University(Natural Science Edition),2021,33(05):69-76.[doi:10.3969/j.issn.2095-0411.2021.05.009]
点击复制

垃圾渗滤液污泥的有机结构对热解行为的影响()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第33卷
期数:
2021年05期
页码:
69-76
栏目:
环境科学与工程
出版日期:
2021-09-28

文章信息/Info

Title:
Effect of Organic Structure on Pyrolysis Behavior of Sewage Sludge from Landfill Leachate
文章编号:
2095-0411(2021)05-0069-08
作者:
刘 鹏 刘 莉 周政忠 呼和涛力 袁浩然 郑 涛
(常州大学 城乡矿山研究院, 江苏 常州 213164)
Author(s):
LIU Peng LIU Li ZHOU Zhengzhong Huhetaoli YUAN Haoran ZHENG Tao
(Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China)
关键词:
污泥热解 有机碳结构 热解产物分布 热解气组分
Keywords:
pyrolysis of sewage sludge organic carbon structure pyrolysis product distribution gas composition
分类号:
X 705
DOI:
10.3969/j.issn.2095-0411.2021.05.009
文献标志码:
A
摘要:
热解是垃圾渗滤液污泥达到减量化、 无害化、 资源化处置的有效方式之一。试验通过污泥固定床热解分析不同温度下热解产物分布及热解气组分, 利用固体核磁测定污泥有机碳结构、 热失重分析仪分析污泥的热失重行为, 系统地阐释垃圾渗滤液污泥有机碳结构对其热解行为的影响规律。结果表明, 污泥中的H/C原子比高达1.97, 乙基碳比例为20.98%, 脂肪碳链较长, 与杂原子相连的脂肪碳比例为22.99%, 其两个热失重速率最大峰在247 ℃与298 ℃处。在400~600 ℃温度内, 热解挥发分形成动态稳定, 热解产物产率保持动态平衡, H2与甲烷释放速率在500 ℃时达到最大值。600 ℃后, 焦油中的长链烃与热解水发生二次裂解重整反应, 半焦气化反应加剧, 热解气产率不断增加, CO释放速率不断增加。
Abstract:
Pyrolysis is one of effective method for reduction, innocuity and resource utilization for sewage sludge from landfill leachate. Pyrolysis experiments were carried out in a fixed bed reactor and product distribution and gas composition were analyzed. The carbon structure and thermogravimetry analysis were monitored by 13C solid nuclear magnetic resonance(13C NMR)and thermogravimetry analyzer, respectively. The effect of organic carbon structure in sewage sludge on pyrolysis behavior is expressed indetail. The results show that the aliphatic carbon chain in sewage sludge is long seen from 1.97 of H/C ratio and 20.98% of ethyl carbon. The heteroatom-linked aliphatic carbon in sewage sludge is high(22.99%)so that the maximum peak value of DTG is at 247 ℃ and 298 ℃. The pyrolysis volatiles formation reached dynamic stability in the temperature range 400—600 ℃. Pyrolysis product yield maintained dynamic equilibrium. H2 and methane release rate reached the maximum at 500 ℃. The long chain hydrocarbon in tar and pyrolysis water undergo secondary pyrolysis and reforming reaction after 600 ℃. Char gasification reaction intensifies result in the increment of pyrolysis gas yield. CO release rate increases continuously.

参考文献/References:

[1]LI X W, CHEN L B, MEI Q Q, et al. Microplastics in sewage sludge from the wastewater treatment plants in China[J]. Water Research, 2018, 142: 75-85.
[2]SAMOLADA M C, ZABANIOTOU A A. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece[J]. Waste Management, 2014, 34(2): 411-420.
[3]ZENG J M, XIAO R, ZHANG H Y, et al. Chemical looping pyrolysis-gasification of biomass for high H2/CO syngas production[J]. Fuel Processing Technology, 2017, 168: 116-122.
[4]JARAMILLO-ARANGO A, FONTS I, CHEJNE F, et al. Product compositions from sewage sludge pyrolysis in a fluidized bed and correlations with temperature[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 287-296.
[5]ZAKER A, CHEN Z, WANG X L, et al. Microwave-assisted pyrolysis of sewage sludge: a review[J]. Fuel Processing Technology, 2019, 187: 84-104.
[6]LIU X J, CHANG F M, WANG C P, et al. Pyrolysis and subsequent direct combustion of pyrolytic gases for sewage sludge treatment in China[J]. Applied Thermal Engineering, 2018, 128: 464-470.
[7]LI Y H, CHANG F M, HUANG B, et al. Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage[J]. Fuel, 2020, 266: 117053.
[8]XUE Y J, WANG C, HU Z H, et al. Pyrolysis of sewage sludge by electromagnetic induction: biochar properties and application in adsorption removal of Pb(II), Cd(II)from aqueous solution[J]. Waste Management, 2019, 89: 48-56.
[9]ZHAO M, WANG F, FAN Y R, et al. Low-temperature alkaline pyrolysis of sewage sludge for enhanced H2 production with in situ carbon capture[J]. International Journal of Hydrogen Energy, 2019, 44(16): 8020-8027.
[10]LIU Y, RAN C M, SIDDIQUI A R, et al. Characterization and analysis of sludge char prepared from bench-scale fluidized bed pyrolysis of sewagesludge[J]. Energy, 2020, 200: 117398.
[11]ZHENG A Q, LI L W, TIPPAYAWONG N, et al. Reducing emission of NOx and SOx precursors while enhancing char production from pyrolysis of sewage sludge by torrefaction pretreatment[J]. Energy, 2020, 192: 116620.
[12]GUAN G Q, KAEWPANHA M, HAO X G, et al. Catalytic steam reforming of biomass tar: prospects and challenges[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 450-461.
[13]SIKARWAR V S, ZHAO M, FENNELL P S, et al. Progress in biofuel production from gasification[J]. Progress in Energy and Combustion Science, 2017, 61: 189-248.
[14]YUAN H Y, WU S B, YIN X L, et al. Adjustment of biomass product gas to raise H2/CO ratio and remove tar over sodium titanate catalysts[J]. Renewable Energy, 2018, 115: 288-298.
[15]孙宁, 应浩, 徐卫, 等. CaO对木屑水蒸气气化制取富氢燃气的影响[J]. 林产化学与工业, 2017, 37(2): 141-147.
[16]AHMED T, XIU S N, WANG L J, et al. Investigation of Ni/Fe/Mg zeolite-supported catalysts in steam reforming of tar using simulated-toluene as model compound[J]. Fuel, 2018, 211: 566-571.
[17]CHEN J C, ZHANG J H, LIU J Y, et al. Co-pyrolytic mechanisms, kinetics, emissions and products of biomass and sewage sludge in N2, CO2 and mixed atmospheres[J]. Chemical Engineering Journal, 2020, 397: 125372.
[18]ZHU J J, YANG Y, YANG L, et al. High quality syngas produced from the co-pyrolysis of wet sewage sludge with sawdust[J]. International Journal of Hydrogen Energy, 2018, 43(11): 5463-5472.
[19]ATIENZA-MARTíNEZ M, RUBIO I, FONTS I, et al. Effect of torrefaction on the catalytic post-treatment of sewage sludge pyrolysis vapors using γ-Al2O3[J]. Chemical Engineering Journal, 2017, 308: 264-274.
[20]ZHANG L G, XIAO B, HU Z Q, et al. Tar-free fuel gas production from high temperature pyrolysis of sewage sludge[J]. Waste Management, 2014, 34(1): 180-184.
[21]MEI Z F, CHEN D Z, ZHANG J X, et al. Sewage sludge pyrolysis coupled with self-supplied steam reforming for high quality syngas production and the influence of initial moisture content[J]. Waste Management, 2020, 106: 77-87.
[22]YIN Q Q, LIU M T, REN H P. Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water[J]. Journal of Environmental Management, 2019, 249: 109410.
[23]CHEN Q D, LIU H, KO J, et al. Structure characteristics of bio-char generated from co-pyrolysis of wooden waste and wet municipal sewage sludge[J]. Fuel Processing Technology, 2019, 183: 48-54.
[24]AMIR S, HAFIDI M, MERLINA G, et al. Structural changes in lipid-free humic acids during composting of sewage sludge[J]. International Biodeterioration & Biodegradation, 2005, 55(4): 239-246.
[25]ALBRECHT R, ZIARELLI F, ALARCóN-GUTIéRREZ E, et al. 13C solid-state NMR assessment of decomposition pattern during co-composting of sewage sludge and green wastes[J]. European Journal of Soil Science, 2008, 59(3): 445-452.
[26]LIU P, ZHANG D X, WANG L L, et al. The structure and pyrolysis product distribution of lignite from different sedimentary environment[J]. Applied Energy, 2016, 163: 254-262.
[27]LIU P, LE J W, WANG L L, et al. Relevance of carbon structure to the yield and aliphatic component of tar derived from coal pyrolysis[J]. Applied Energy, 2016, 183: 470-477.

备注/Memo

备注/Memo:
收稿日期:2021-07-07。基金项目:国家重点研发计划资助项目(2018YFC1901203); 国家自然科学基金资助项目(51906021, 51703014)。作者简介:刘鹏(1989—), 男, 安徽石台人, 博士, 讲师。 E-mail: liupeng@cczu.edu.cn
更新日期/Last Update: 1900-01-01