[1]曾芳磊,李宁,周心宇,等.硫正极中硝酸盐和黏结剂的种类对锂硫电池性能的影响[J].常州大学学报(自然科学版),2021,33(06):22-30.[doi:10.3969/j.issn.2095-0411.2021.06.004]
 ZENG Fanglei,LI Ning,ZHOU Xinyu,et al.Effects of Different Kinds of Nitrates and Binders in Sulfur Electrodes on the Performance of Lithium-Sulfur Batteries[J].Journal of Changzhou University(Natural Science Edition),2021,33(06):22-30.[doi:10.3969/j.issn.2095-0411.2021.06.004]
点击复制

硫正极中硝酸盐和黏结剂的种类对锂硫电池性能的影响()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第33卷
期数:
2021年06期
页码:
22-30
栏目:
材料科学与工程
出版日期:
2021-11-28

文章信息/Info

Title:
Effects of Different Kinds of Nitrates and Binders in Sulfur Electrodes on the Performance of Lithium-Sulfur Batteries
文章编号:
2095-0411(2021)06-0022-09
作者:
曾芳磊1李宁1周心宇1常世晔1袁宁一1丁建宁12
(1.常州大学材料科学与工程学院,江苏常州213164;2.江苏大学智能柔性机械电子研究院,江苏镇江212013)
Author(s):
ZENG Fanglei1 LI Ning1 ZHOU Xinyu1 CHANG Shiye1 YUAN Ningyi1 DING Jianning12
(1. School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; 2. Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China)
关键词:
锂硫电池 穿梭效应 硝酸锂 硝酸盐 黏结剂
Keywords:
lithium sulfur battery shuttle effect lithium nitrate nitrates binder
分类号:
TM 911
DOI:
10.3969/j.issn.2095-0411.2021.06.004
文献标志码:
A
摘要:
系统研究了正极中使用不同种类的硝酸盐和黏结剂对锂硫电池电化学性能的影响。通过对比锂硫电池的循环性能和库伦效率, 发现以硝酸镁为正极添加剂的锂硫电池的库伦效率最高, 且其最适合的质量分数为10%。在研究硫正极中硝酸盐和黏结剂的协同效应对锂硫电池电性能的影响时, 发现使用β-环糊精聚合物(β-CDp)黏结剂的锂硫电池电化学性能最好。在此基础上, 使用含硝酸锂的电解液可进一步提高了锂硫电池库伦效率(>98%), 说明硫正极中的硝酸镁和黏结剂以及电解液中的硝酸锂之间有协同作用, 可共同抑制穿梭效应, 有助于进一步提高锂硫电池的放电比容量和库伦效率。
Abstract:
The effects of different kinds of nitrates and binders on the electrochemical performance of lithium sulfur batteries were systematically studied. By comparing the cycle performance and coulombic efficiency of lithium-sulfur battery, it was found that the lithium-sulfur battery using magnesium nitrate as the sulfur electrode additive has the highest coulomb efficiency. And the most suitable addition amount of magnesium nitrate is 10%. In investigating the influence of the synergistic effect of nitrates and binders in sulfur electrodes on the electrochemical performance of lithium-sulfur batteries, it was found that the lithium-sulfur battery using the β-cyclodextrin polymer(β-CDp)binder delivered the best electrochemical performance. On this basis, by using the electrolyte containing lithium nitrate, the coulombic efficiency of lithium-sulfur batteries was further improved(>98%), indicating that there is a synergistic effect among the magnesium nitrate, the β-CDp binder in the sulfur cathode and the lithium nitrate in the electrolyte, which could suppress the shuttle effect of polysulfides and further improve the discharge capacity and coulombic efficiency of lithium-sulfur batteries.

参考文献/References:

[1]ZHAO M, LI B, PENG H, et al. Challenges and opportunities towards practical lithium-sulfur batteries under lean electrolyte conditions[J]. Angewandte Chemie, 2019, 132(31): 1-14.
[2]ALBERTUS P, BABINEC S, LITZELMAN S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy, 2018, 3(1): 16-21.
[3]LI Z, HUANG Y M, YUAN L X, et al. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries[J]. Carbon, 2015, 92: 41-63.
[4]WILD M, O’NEILL L, ZHANG T, et al. Lithium sulfur batteries, a mechanistic review[J]. Energy & Environmental Science, 2015, 8(12): 3477-3494.
[5]HOFMANN A F, FRONCZEK D N, BESSLER W G. Mechanistic modeling of polysulfide shuttle and capacity loss in lithium sulfur batteries[J]. Journal of Power Sources, 2014, 259: 300-310.
[6]LIU D H, ZHANG C, ZHOU G M, et al. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect[J]. Advanced Science, 2018, 5(1): 1700270.
[7]ZHANG S S. Role of LiNO3 in rechargeable lithium/sulfur battery[J]. Electrochimica Acta, 2012, 70: 344-348.
[8]ZHANG L, LING M, FENG J, et al. The synergetic interaction between LiNO3 and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries[J]. Energy Storage Materials, 2018, 11: 24-29.
[9]LIANG X, WEN Z Y, LIU Y, et al. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte[J]. Journal of Power Sources, 2011, 196(22): 9839-9843.
[10]ZHANG S S. A new finding on the role of LiNO3 in lithium-sulfur battery[J]. Journal of Power Sources, 2016, 322: 99-105.
[11]XIONG S Z, XIE K, DIAO Y, et al. Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium-sulfur batteries[J]. Electrochimica Acta, 2012, 83: 78-86.
[12]ROSENMAN A, ELAZARI R, SALITRA G, et al. The effect of interactions and reduction products of LiNO3, the anti-shuttle agent, in Li-S battery systems[J]. Journal of The Electrochemical Society, 2015, 162(3): A470-A473.
[13]QU C, CHEN Y Q, YANG X F, et al. LiNO3-free electrolyte for Li-S battery: a solvent of choice with low Ksp of polysulfide and low dendrite of lithium[J]. Nano Energy, 2017, 39: 262-272.
[14]CHEN S R, WANG D W, ZHAO Y M, et al. Superior performance of a lithium-sulfur battery enabled by a dimethyl trisulfide containing electrolyte[J]. Small Methods, 2018, 2(6): 1800038.
[15]MUKRA T, HOROWITZ Y, SHEKHTMAN I, et al. Disiloxane with nitrile end groups as co-solvent for electrolytes in lithium sulfur batteries-a feasible approach to replace LiNO3[J]. Electrochimica Acta, 2019, 307: 76-82.
[16]GUAN Y P, WANG A R, LIU S, et al. Protecting lithium anode with LiNO3/Al2O3/PVDF-coated separator for lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2018, 765: 544-550.
[17]ZENG F L, WANG W K, WANG A B, et al. Multidimensional polycation β-cyclodextrin polymer as an effective aqueous binder for high sulfur loading cathode in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(4): 26257-26265.
[18]刁岩, 谢凯, 洪晓斌, 等. Li-S电池硫正极性能衰减机理分析及研究现状概述[J]. 化学学报, 2013, 71: 508-518.

备注/Memo

备注/Memo:
收稿日期:2021-03-08。
基金项目:国家自然科学基金资助项目(21805016); 江苏省自然科学基金资助项目(BK20180961); 江苏省高等学校自然科学研究基金资助项目(18KJD530001)。
作者简介:曾芳磊(1987—), 女, 山东聊城人, 博士, 讲师。E-mail: fangleizeng@cczu.edu.cn
更新日期/Last Update: 1900-01-01