[1]刘红梅,蒋威,刘文明,等.一种描述颗粒沉积现象的MonteCarlo算法[J].常州大学学报(自然科学版),2021,33(06):51-57.[doi:10.3969/j.issn.2095-0411.2021.06.008]
 LIU Hongmei,JIANG Wei,LIU Wenming,et al.A Monte Carlo Method for Particle Deposition Process[J].Journal of Changzhou University(Natural Science Edition),2021,33(06):51-57.[doi:10.3969/j.issn.2095-0411.2021.06.008]
点击复制

一种描述颗粒沉积现象的MonteCarlo算法()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第33卷
期数:
2021年06期
页码:
51-57
栏目:
环境科学与工程
出版日期:
2021-11-28

文章信息/Info

Title:
A Monte Carlo Method for Particle Deposition Process
文章编号:
2095-0411(2021)06-0051-07
作者:
刘红梅123蒋威1刘文明12刘雪东12
(1.常州大学机械与轨道交通学院,江苏常州213164;2.江苏省绿色过程装备重点实验室(常州大学),江苏常州213164;3.江苏梅兰化工有限公司,江苏泰州225300)
Author(s):
LIU Hongmei123 JIANG Wei1 LIU Wenming12 LIU Xuedong12
(1. School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China; 2. Jiangsu Key Laboratory of Green Process Equipment, Changzhou University, Changzhou 213164, China; 3. Jiangsu Meilan Chemical Co., Ltd., Taizhou 225300, China)
关键词:
Monte Carlo算法 颗粒群平衡方程 重力沉积 布朗扩散沉积
Keywords:
Monte Carlo method population balance equation gravitation-dominant deposition diffusion-dominant deposition
分类号:
X 513
DOI:
10.3969/j.issn.2095-0411.2021.06.008
文献标志码:
A
摘要:
为了提高Monte Carlo算法在求解颗粒群平衡方程时的计算精度和效率, 发展了一种基于异权值Monte Carlo(DWMC)算法的快速Monte Carlo(F-DWMC)算法, 该算法在处理颗粒沉积事件时采用确定性方法, 能够更加快速准确地求解颗粒的沉积行为。文章选定了两种存在理论分析解的工况(分别考虑颗粒重力沉积和布朗扩散沉积行为)对F-DWMC算法进行了验证, 获得了多分散颗粒物系统的颗粒尺寸分布函数曲线, 计算结果与理论分析解吻合较好, 并且与DWMC算法相比, F-DWMC算法具有更高的计算精度和效率。
Abstract:
In order to improve the computational accuracy and efficiency of Monte Carlo method in solving the particle population balance equation, a fast Monte Carlo(F-DWMC)method based on the differentially weighted Monte Carlo(DWMC)method was proposed. The deposition event was solved by a deterministic method which would be faster and more precise. Two cases with analytical solutions were used to verify this F-DWMC method, where gravitation-dominant deposition and diffusion-dominant deposition were considered, respectively. The simulation results of F-DWMC method agree well with the analytical solutions with small relative errors. Furthermore, the F-DWMC method also exhibits higher computational accuracy and efficiency than the DWMC method for solving particle deposition dynamics.

参考文献/References:

[1]李福生, 徐新喜, 孙栋, 等. 气溶胶颗粒在人体上呼吸道模型内沉积的实验研究[J]. 医用生物力学, 2013, 28(2): 135-141.
[2]XU Z M, SUN A D, HAN Z M, et al. Improvement of particle deposition model using random function method[J]. Building and Environment, 2019, 158: 192-204.
[3]LI Y, GU W G, WANG D Z, et al. Direct numerical simulation of polydisperse aerosol particles deposition in low reynolds number turbulent flow[J]. Annals of Nuclear Energy, 2018, 121: 223-231.
[4]李金波, 王沛丽, 程林. 一种新型受热面飞灰颗粒的沉积特性[J]. 化工学报, 2016, 67(9): 3598-3606.
[5]FRIEDLANDER S. Smoke, dust and haze:fundamentals of aerosol behaviour[M]. New York: Oxford University Press, 1977.
[6]SHANG X P, WAN M P, NG B F, et al. A CFD-sectional algorithm for population balance equation coupled with multi-dimensional flow dynamics[J]. Powder Technology, 2020, 362: 111-125.
[7]YU M Z, LIU Y Y, JIN G D, et al. A new analytical solution for agglomerate growth undergoing Brownian coagulation[J]. Applied Mathematical Modelling, 2016, 40(9/10): 5497-5509.
[8]LIU H M, CHAN T L. Differentially weighted operator splitting Monte Carlo method for simulating complex aerosol dynamic processes[J]. Particuology, 2018, 36: 114-126.
[9]赵海波, 郑楚光. 凝并和成核机理下颗粒尺度分布的Monte Carlo求解[J]. 高等学校化学学报, 2005, 26(11): 2086-2089.
[10]DEVILLE R E L, RIEMER N, WEST M. Weighted Flow Algorithms(WFA)for stochastic particle coagulation[J]. Journal of Computational Physics, 2011, 230(23): 8427-8451.
[11]LIU H M, CHAN T L. Two-component aerosol dynamic simulation using differentially weighted operator splitting Monte Carlo method[J]. Applied Mathematical Modelling, 2018, 62: 237-253.
[12]ZHAO H B, KRUIS F E, ZHENG C G. A differentially weighted Monte Carlo method for two-component coagulation[J]. Journal of Computational Physics, 2010, 229(19): 6931-6945.
[13]ZHAO H B, ZHENG C G, XU M H. Multi-Monte Carlo method for particle coagulation: description and validation[J]. Applied Mathematics and Computation, 2005, 167(2): 1383-1399.
[14]赵海波, 郑楚光. 描述颗粒沉积动力学演变过程的一种随机算法[J]. 空气动力学学报, 2006, 24(2): 141-146.
[15]PARK S H, LEE K W. Analytical solution to change in size distribution of polydisperse particles in closed chamber due to diffusion and sedimentation[J]. Atmospheric Environment, 2002, 36(35): 5459-5467.
[16]赵海波, 郑楚光. 同时发生的颗粒凝并和沉积现象的Monte Carlo模拟[J]. 中国科学E辑, 2006, 36(3): 270-284.

备注/Memo

备注/Memo:
收稿日期:2021-06-04。
基金项目:江苏省自然科学基金资助项目(BK20210854); 江苏省高校自然科学基金资助项目(20KJB470009)。
作者简介:刘红梅(1988—), 女, 河北衡水人, 博士, 讲师。E-mail: liuhm@cczu.edu.cn
更新日期/Last Update: 1900-01-01