[1]朱晔,朱梦冰,汪城,等.基于火积理论的级间导热二级相变蓄热装置优化[J].常州大学学报(自然科学版),2021,33(06):62-69.[doi:10.3969/j.issn.2095-0411.2021.06.010]
 ZHU Ye,ZHU Mengbing,WANG Cheng,et al.Entransy Analysis on Double-Stage LHS Unit with the Consideration of Heat Leakage Between Portions[J].Journal of Changzhou University(Natural Science Edition),2021,33(06):62-69.[doi:10.3969/j.issn.2095-0411.2021.06.010]
点击复制

基于火积理论的级间导热二级相变蓄热装置优化()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第33卷
期数:
2021年06期
页码:
62-69
栏目:
石油及天然气工程
出版日期:
2021-11-28

文章信息/Info

Title:
Entransy Analysis on Double-Stage LHS Unit with the Consideration of Heat Leakage Between Portions
文章编号:
2095-0411(2021)06-0062-08
作者:
朱晔1朱梦冰2汪城3李进龙1陶磊3黄维秋3
(1.常州大学石油化工学院,江苏常州213164;2.常州大学材料科学与工程学院,江苏常州213164;3.常州大学石油工程学院,江苏常州213164)
Author(s):
ZHU Ye1 ZHU Mengbing2 WANG Cheng3 LI Jinlong1 TAO Lei3 HUANG Weiqiu3
(1. School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; 2. School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China; 3. School of Petroleum Engineering, Changzhou University, Changzhou 213164, China)
关键词:
火积 相变蓄热装置 优化 二级 级间导热
Keywords:
entransy latent heat storage(LHS)unit optimization double-stage heat leakage
分类号:
TK 02
DOI:
10.3969/j.issn.2095-0411.2021.06.010
文献标志码:
A
摘要:
相变蓄热是一种有效的热量储存方式, 二级相变蓄热装置性能优于单级装置。级间导热是蓄热装置性能的影响因素之一, 但在之前的研究中常被忽略。基于火积理论, 对考虑级间导热的二级相变蓄热装置进行了优化分析, 给出了蓄热材料的相变温度匹配准则式。和无级间导热的结果相比, 入口段的相变温度降低, 出口段提高。由于级间导热的存在, 二级相变蓄热装置相对于单级装置的性能优势被减弱。设备传热单元数NTU较小时, 相变温度匹配受到的影响较大。因此, 在设计二级相变蓄热装置时, 需考虑级间导热的影响, 优化选取相变材料。但无需过度强调级间隔热的设计需求, 尤其是在设备传热单元数NTU较少时。结果可用于对二级蓄热装置的合理设计和性能优化, 也为多级装置优化研究提供参考。
Abstract:
Latent Heat Storage(LHS)is an effective way to store thermal energy, of which double-stage LHS unit is more beneficial than single-stage unit. Heat conduction between stages is one factor influencing on performance of LHS. However, it is always neglected or over-highlighted in references. Based on entransy theory, analysis on double-stage LHS unit is conducted, with the consideration of heat leakage between portions. The criterion formulas of optimum melting temperature match is derived. It is concluded that melting temperature of Phase Change Materials(PCMs)in inlet portion increases, while that in outlet portion decreases, comparing with those in the case without consideration of heat leakage. The difference between two PCMs melting temperatures is narrowed, which implies that performance improvement by double-stage design may diminish, due to the existence of heat leakage. The effects of heat leakage on optimum melting temperature match is more significant, when number of transfer units(NTU)is at small value. However, it is also found that augment degree of entransy dissipation is not so much. Therefore, it is necessary to take into account the existence of heat leakage between portions in double-stage LHS unit, and respectively to re-construct with melting temperature match. However, it is not necessary to over-estimate the effect of heat leakage on performance deterioration, especially when NTU is at small value, because perfect heat insulation does not give much benefits on performance improvement. Results are helpful for reasonable design and performance optimization of double-stage LHS unit and are important reference to the optimization of multi-stage LHS unit under investigation.

参考文献/References:

[1]LI T X, WANG R Z, KIPLAGAT J K, et al. Experimental study and comparison of thermochemical resorption refrigeration cycle and adsorption refrigeration cycle[J]. Chemical Engineering Science, 2010, 65(14): 4222-4230.
[2]WANG C, ZHANG P, WANG R Z. Performance of solid-gas reaction heat transformer system with gas valve control[J]. Chemical Engineering Science, 2010, 65(10): 2910-2920.
[3]AVCI M, YAZICI M Y. Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit[J]. Energy Conversation and Management, 2013, 73: 271-277.
[4]REGIN A F, SOLANKI S C, SAINI J S. Heat transfer characteristics of thermal energy storage system using PCM capsules: a review[J]. Renewable Sustainable Energy Review, 2008, 12(9): 2438-2458.
[5]章学来, 于树轩, 林原培, 等. 相变蓄热冷凝热回收实验研究[J]. 化工学报, 2010, 61(s2): 43-48.
[6]徐治国, 赵长颖, 纪育楠, 等. 中低温相变蓄热的研究进展[J]. 储能科学与技术, 2014, 3(3): 179-190.
[7]NOMURA T, ZHU C Y, SHENG N, et al. Shape-stabilized phase change composite by impregnation of octadecane into mesoporous SiO2[J]. Solar Energy Material and Solar Cells, 2015, 143: 424-429.
[8]康亚盟, 刁彦华, 赵耀华, 等. 纳米复合相变蓄热材料的制备与特性[J]. 化工学报, 2016, 67(s1): 372-378.
[9]吴志根, 赵长颖, 顾清之. 多孔介质在高温相变蓄热中的强化换热[J]. 化工学报, 2012, 63(s1): 119-122.
[10]XU H J, ZHAO C Y. Thermodynamic analysis and optimization of cascaded latent heat storage system for energy efficient utilization[J]. Energy, 2015, 90: 1662-1673.
[11]SEENIRAJ R V, NARASIMHAN N L. Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs[J]. Solar Energy, 2008, 82(6): 535-542.
[12]ZHANG Z G, SHAO G, FANG X M. Study on paraffin/expanded graphite composite phase change thermal energy storage material[J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2005, 26(5): 698-702.
[13]WANG C, ZHU Y. Optimization of double-stage latent heat storage unit in whole cycle with entransy analysis[J]. International Journal of Heat and Mass Transfer, 2017, 114: 1013-1024.
[14]LI G. Energy and exergy performance assessments for latent heat thermal energy storage system[J]. Renewable and Sustainable Energy Review, 2015, 51: 926-954.
[15]ETGHANI M M, BABOLI S A H. Numerical investigation and optimization of heat transfer and exergy loss in shell and helical tube heat exchanger[J]. Applied Thermal Engineering, 2017, 121: 294-301.
[16]BEJAN A. Entropy generation minimization[M]. Boca Raton: CRC, 1996.
[17]GUO Z Y, ZHU H Y, LIANG X G. Entransy-a physical quantity describing heat transfer ability[J]. International Journal of Heat and Mass Transfer, 2007, 50(13/14): 2545-2556.
[18]CHEN Q, WU J, REN J X. Thermodynamic optimization and heat transfer optimization for convective heat transfer[J]. Journal of Engineering Thermophysics, 2008, 29(2): 271-274.
[19]陶于冰, 何雅玲, 刘永坤. 火积耗散原理在相变储热过程优化中的应用[J]. 工程热物理学报, 2014, 5: 973-977.
[20]FENG H J, CHEN L G, XIE Z H, et al. Constructal entransy dissipation rate minimization for triangular heat trees at micro and nanoscales[J]. International Journal of Heat and Mass Transfer, 2015, 84: 848-855.
[21]TAO Y B, HE Y L, LIU Y K, et al. Performance optimization of two-stage latent heat storage unit based on entransy theory[J]. International Journal of Heat and Mass Transfer, 2014, 77: 695-703.
[22]WANG C, ZHU Y. Entransy analysis on boiler air pre-heater with multi-stage LHS unit[J]. Applied Thermal Engineering, 2018, 130: 1139-1146.

备注/Memo

备注/Memo:
收稿日期:2021-06-01。
基金项目:国家自然科学基金资助项目(51306023)。
作者简介:朱晔(1984—), 女, 江苏靖江人, 硕士, 实验师。通信联系人: 汪城(1984—), E-mail: wangcheng3756@163.com
更新日期/Last Update: 1900-01-01