[1]张禹,刘银春,赵会军,等.基于CAESARⅡ的集气站放空管道应力优化研究[J].常州大学学报(自然科学版),2021,33(06):70-78.[doi:10.3969/j.issn.2095-0411.2021.06.011]
 ZHANG Yu,LIU Yinchun,ZHAO Huijun,et al.Research on Stress Optimization of Vent Pipeline of Gas Collection Station Based on CAESAR Ⅱ[J].Journal of Changzhou University(Natural Science Edition),2021,33(06):70-78.[doi:10.3969/j.issn.2095-0411.2021.06.011]
点击复制

基于CAESARⅡ的集气站放空管道应力优化研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第33卷
期数:
2021年06期
页码:
70-78
栏目:
石油及天然气工程
出版日期:
2021-11-28

文章信息/Info

Title:
Research on Stress Optimization of Vent Pipeline of Gas Collection Station Based on CAESAR Ⅱ
文章编号:
2095-0411(2021)06-0070-09
作者:
张禹1刘银春2赵会军1周昊1于鹏飞1薛岗2
(1.常州大学石油工程学院,江苏常州213164;2.西安长庆科技工程有限责任公司,陕西西安710018)
Author(s):
ZHANG Yu1 LIU Yinchun2 ZHAO Huijun1 ZHOU Hao1 YU Pengfei1 XUE Gang2
(1. School of Petroleum Engineering, Changzhou University, Changzhou 213164, China; 2. Xi’an Changqing Technology Engineering Co., Ltd., Xi’an 710018, China)
关键词:
放空管道 CAESARⅡ 应力分析 设计压力 操作温度 壁厚 约束
Keywords:
venting pipeline CAESARⅡ stress analysis design pressure operating temperature wall thickness constraint
分类号:
TE 832
DOI:
10.3969/j.issn.2095-0411.2021.06.011
文献标志码:
A
摘要:
为了保证某集气站改建的放空管道安全运行, 对其设计方案进行管道应力优化研究。利用CAESAR Ⅱ软件分别对管道设计压力, 操作温度, 管道壁厚, 约束条件的影响机制进行模拟计算和分析。结果表明: 管道一次应力随着设计压力的升高而增大, 随着管道壁厚的增加而减小; 二次应力随着管道运行温度与环境温度温差的减小而减小, 随管道壁厚的增大而减小; 设置约束可以有效减小位移和一次应力, 但固定约束会使二次应力增加, 承重约束对减小管道位移作用较小。在设计中, 管道一次应力较大, 可以采用增设15个导向约束, 并合理布置约束位置的方法进行优化, 放空管道的最大一次应力降低10.8%左右, 符合安全要求。
Abstract:
In order to ensure the safe operation of the vented pipeline reconstructed in a gas gathering station, the pipeline stress optimization study of its design scheme was carried out. CAESAR Ⅱ was used to simulate and analyze the design pressure, operating temperature, wall thickness, and constraints of the pipeline. The results show that the primary stress of the pipeline increases with the increase of the design pressure and decreases with the increase of the wall thickness of the pipeline; the secondary stress decreases with the decrease of the temperature difference between the pipeline operating temperature and the ambient temperature, and decreases with the pipeline wall thickness decreases with increasing thickness; setting constraints can effectively reduce displacement and primary stress, but fixed constraints will increase secondary stress, and load constraints have less effect on reducing pipeline displacement. In the design, the primary stress of the pipeline is large. It can be optimized by adding 15 guidance constraints and arranging the constraint positions reasonably. The maximum primary stress of the vented pipeline is reduced by about 10.8%, which meets the safety requirements.

参考文献/References:

[1]王新庆. 基于管道应力分析的管道系统设计研究[J]. 给水排水, 2012, 48(s2): 219-222.
[2]吴晓南, 鲜燕, 黄坤, 等. 运行工况下隧道内输气管道的应力分析[J]. 油气储运, 2012, 31(12): 927-930.
[3]黄坤, 卢泓方, 吴世娟, 等. 穿越滑坡体埋地输气管道应力分析[J]. 应用力学学报, 2015, 32(4): 689-693, 712.
[4]孙靖云, 陈利琼, 夏燕, 等. 地震载荷工况下隧道内油气管道应力分析研究[J]. 应用力学学报, 2017, 34(4): 795-801, 824.
[5]VERMA A K, YADAV B K, GANDHI A, et al. 3D modelling of loop layout, pipe stress analysis and structural responses of high-pressure high-temperature experimental helium cooling loop(EHCL)[J]. Fusion Engineering and Design, 2019, 145(8): 87-93.
[6]SUN Y, LYU C. The affected analysis of pipeline thermal stress under different support conditions and wall thickness based on finite element simulation[J]. Science Discovery, 2017, 5(5): 362-368.
[7]吴晓南, 舒浩纹, 昝林峰, 等. 试压工况下盾构隧道内输气管道应力分析[J]. 天然气工业, 2013, 33(3): 73-77.
[8]HUANG K, WU S J, CHEN L Q, et al. Stress analysis of oil and gas pipeline parallel laying when traversing tunnels[J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(6): 1248-1254.
[9]王学龙. 基于有限元分析的滑坡段输气管道应力分析[D]. 成都: 西南石油大学, 2016.
[10]WU X N, JIANG Y, LU H F, et al. Stress analysis of shallow sea gas pipelines [J]. Research Journal of Applied Sciences Engineering and Technology, 2014, 7(1): 157-160.
[11]WU X, LU H, HUANG K, et al. Frequency spectrum method-based stress analysis for oil pipelines in earthquake disaster areas[J]. PLoS One, 2015, 10(2): e0115299.
[12]吴晓南, 卢泓方, 黄坤, 等. 基于频谱分析的地震带输气管道应力分析方法[J]. 天然气工业, 2014, 34(5): 152-157.
[13]沈坤蓉, 吴佳丽, 黄坤. 地震载荷工况下输油管道应力分析[J]. 地下空间与工程学报, 2015, 11(6): 1648-1652.
[14]陈周, 唐培连, 王玺, 等. 水下盾构隧道管道支座受力分析与设计[J]. 油气储运, 2017, 36(7): 838-842.
[15]唐永进. 压力管道应力分析[M]. 2版. 北京: 中国石化出版社, 2010.
[16]国家位量技术监督局、 中华人民共和国建设部. 工业金属管道设计规范: GB 50316—2000[S]. 北京: 中国计划出版社, 2008.
[17]美国机械工程师学会压力管道委员会. 加工管线: ASME B31.3—2016[S]. 北京: 中国计划出版社, 2016.
[18]全敏. 输气站场典型设备与管段应力分析研究[D]. 成都: 西南石油大学, 2012.

备注/Memo

备注/Memo:
收稿日期:2021-07-13。
作者简介:张禹(1996—), 男, 江苏高邮人, 硕士生。通信联系人: 赵会军(1965—), E-mail: zhj@cczu.edu.cn
基于CAESAR Ⅱ的集气站放空管道应力优化研究
更新日期/Last Update: 1900-01-01