[1]张颖,许世林,王雪琴,等.不同管路元件流动声发射信号熵值量化分析方法[J].常州大学学报(自然科学版),2021,33(06):79-86.[doi:10.3969/j.issn.2095-0411.2021.06.012]
 ZHANG Ying,XU Shilin,WANG Xueqin,et al.Quantitative Analysis Method for Acoustic Emission Signal Entropy of Fluid Flow in Different Pipeline Components[J].Journal of Changzhou University(Natural Science Edition),2021,33(06):79-86.[doi:10.3969/j.issn.2095-0411.2021.06.012]
点击复制

不同管路元件流动声发射信号熵值量化分析方法()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第33卷
期数:
2021年06期
页码:
79-86
栏目:
计算机与信息工程
出版日期:
2021-11-28

文章信息/Info

Title:
Quantitative Analysis Method for Acoustic Emission Signal Entropy of Fluid Flow in Different Pipeline Components
文章编号:
2095-0411(2021)06-0079-08
作者:
张颖1许世林1王雪琴1陆钰佳1张延兵2
(1.常州大学环境与安全工程学院,江苏常州213164;2.江苏省特种设备安全监督检验研究院南通分院,江苏南通226000)
Author(s):
ZHANG Ying1 XU Shilin1 WANG Xueqin1 LU Yujia1 ZHANG Yanbing2
(1. School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China; 2. Branch of Nantong, Special Equipment Safety Supervision Inspection Institute of Jiangsu Province, Nantong 226000, China)
关键词:
管路元件 声发射检测 时频熵 小波能量熵
Keywords:
pipeline components acoustic emission detection time-frequency entropy wavelet energy entropy
分类号:
TP 39
DOI:
10.3969/j.issn.2095-0411.2021.06.012
文献标志码:
A
摘要:
针对流体在流经不同管路元件时产生的噪声会造成管道损伤在线监测精准性下降的问题,引入了小波能量熵与时频熵两种熵值量化分析方法,通过计算流体流动声信号的熵值对流动过程中不同管路元件的流动状态进行量化,从而判断损伤是否发生以及损伤所处的管路元件部位。在此基础上,设计了管路流动声发射测试实验,采集了不同压力下直管、弯头入口、弯头出口、三通、变径管小头共5种管路元件的声发射信号,对所采集的声发射信号逐一采用时频熵及小波能量熵的方法分析计算。测试实验结果表明,时频熵与小波能量熵均能很好地区分不同管路元件的流动状态差异,且时频熵对同一管路元件压力变化时的流动状态有着较高的量化精度。
Abstract:
To address the problem that the noise generated by the fluid flowing through different pipeline components would cause the accuracy of online monitoring of pipeline damage to decrease, two entropy quantitative analysis methods, wavelet energy entropy and time-frequency entropy were introduced. The entropy value of the acoustic signal of fluid flow was calculated to quantify the flow state of different pipeline components during the flow process, so as to determine whether the damage had occurred and the pipeline component where the damage was located. On this basis, pipeline flow acoustic emission test experiment was designed, and the acoustic emission signals of five types of pipeline components were collected under different pressure: straight pipe, elbow inlet, elbow outlet, tee and reducer head, and the collected acoustic emission signals are analyzed and calculated by the method of time-frequency entropy and wavelet energy entropy one by one. The test results show that the time-frequency entropy and wavelet energy entropy can distinguish the flow state differences of different pipeline components, and the time-frequency entropy has a high quantification accuracy for the flow state when the pressure of the same pipeline component changes.

参考文献/References:

[1]LEI Y G, ZUO M J. Gear crack level identification based on weighted K nearest neighbor classification algorithm[J]. Mechanical Systems and Signal Processing, 2009, 23(5): 1535-1547.
[2]姚敏. 数字图像处理[M]. 3版. 北京: 机械工业出版社, 2017: 85-93.
[3]MOELET J, ARENS G, FOURGEAU E, et al. Wave propagation and sampling theory-Part I: complex signal and scattering in multilayered media[J]. Geophysics, 1982, 47(2): 203-221.
[4]COOLEY J W, TUKEY J W. An algorithm for machine calculation of complex Fourier series[J]. Mathematics of Computation, 1965, 58(17): 223-227.
[5]YAN R, GAO R X, CHEN X. Wavelets for fault diagnosis of rotary machines: a review with applications[J]. Signal Processing, 2014, 96(5): 1-15.
[6]王婷. EMD算法研究及其在信号去噪中的应用[D]. 哈尔滨: 哈尔滨工程大学, 2010.
[7]王振亚, 姚立纲. 广义精细复合多尺度样本熵与流形学习相结合的滚动轴承故障诊断方法[J]. 中国机械工程, 2020, 31(20): 2463-2471.
[8]武薇, 申永军, 杨绍普. 基于排列熵理论的非线性系统特征提取研究[J]. 振动与冲击, 2020, 39(7): 67-73.
[9]LI Y X, JIAO S B, GENG B, et al. Research on feature extraction of ship-radiated noise based on multi-scale reverse dispersion entropy[J]. Applied Acoustics, 2021, 173(17): 185-194.
[10]SHANNON C E. A mathematical theory of communication[J]. Bell Labs Technical Journal, 1948, 27(4): 623-656.
[11]GRIFFEL D H. Ten lectures on wavelets[J]. The Mathematical Gazette, 1995, 79(484): 224-227.
[12]HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.

相似文献/References:

[1]裴峻峰,代云聪,孙 旭,等.原油管式加热炉对流室炉管腐蚀程度的声发射检测[J].常州大学学报(自然科学版),2015,(01):16.[doi:10.3969/j.issn.2095-0411.2015.01.003]
 PEI Jun-feng,DAI Yun-cong,SUN Xu,et al.Acoustic Emission Detection for Tube's Corrosion in Convection Chamber of Crude Tubular Furnace under Different Corrosion Status[J].Journal of Changzhou University(Natural Science Edition),2015,(06):16.[doi:10.3969/j.issn.2095-0411.2015.01.003]

备注/Memo

备注/Memo:
收稿日期:2021-05-15。
基金项目:中国石油化工股份有限公司科技攻关项目(320108); 江苏省市场监督管理局科技计划项目(KJ207515); 常州大学科研启动项目(ZMF19020313)。
作者简介:张颖(1972—), 男, 黑龙江北安人, 博士, 教授。E-mail: aezy163@163.com
更新日期/Last Update: 1900-01-01