[1]张大山,戴如娟,毛林强,等.石化剩余污泥理化性能与热动力学特性研究[J].常州大学学报(自然科学版),2022,34(01):33-41.[doi:10.3969/j.issn.2095-0411.2022.01.004]
 ZHANG Dashan,DAI Rujuan,MAO Linqiang,et al.Study on Physicochemical and Thermodynamic Properties of Petrochemical Excess Sludge[J].Journal of Changzhou University(Natural Science Edition),2022,34(01):33-41.[doi:10.3969/j.issn.2095-0411.2022.01.004]
点击复制

石化剩余污泥理化性能与热动力学特性研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第34卷
期数:
2022年01期
页码:
33-41
栏目:
环境科学与工程
出版日期:
2022-01-28

文章信息/Info

Title:
Study on Physicochemical and Thermodynamic Properties of Petrochemical Excess Sludge
文章编号:
2095-0411(2022)01-0033-09
作者:
张大山1戴如娟2毛林强1彭明国1张文艺1
(1.常州大学环境与安全工程学院,江苏常州213164;2.无锡马盛环境能源科技有限公司,江苏无锡214000)
Author(s):
ZHANG Dashan1 DAI Rujuan2 MAO Linqiang1 PENG Mingguo1 ZHANG Wenyi1
(1.School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China; 2.Wuxi Masun Environmental Energy Technoligy Co., Ltd., Wuxi 214000, China)
关键词:
石化剩余污泥 理化性能 热动力学 综合燃烧特性指数
Keywords:
petrochemical excess sludge physical and chemical properties thermodynamics comprehensive combustion characteristic index
分类号:
X 703
DOI:
10.3969/j.issn.2095-0411.2022.01.004
文献标志码:
A
摘要:
针对石化废水生物处理产生的剩余污泥处置难题,考察利用其中所含油类及生物质热值的可行性,采用XRF, FT-IR, XRD, GC, TG-DSC等分析手段,表征其理化性质及热动力学特性。结果表明:干基石化剩余污泥晶体种类主要为α-石英相,CaO,Fe2O3两种助溶剂质量分数较高,分别为39.2%和18.6%,Cl和Cr2O3含量最低; 污泥中包含N—H,—CO—NH—,—CO—X—,CO2-3,SiO2-4,SO2-4等; 重金属含量相对较低,其中Zn含量为50.44 mg/kg、Cu含量为2.14 mg/kg、Ni含量为6.44 mg/kg; 石油烃含量丰富,m(C10~C14):m(C16~C28):m(C30~C40)为5:18:2,油脂类C16~C28含量最高,达29.77 g/kg; 200~500 ℃时石化剩余污泥失重速率达到最大,800 ℃以上污泥热失重趋于结束。综合燃烧特性分析表明,随着升温速率的增大,试样的着火温度介于252.17~256.49 ℃,燃尽温度、最大失重速率、平均失重速率和综合燃烧特性指数(S)随之呈现升高的趋势。在较高的升温速率下污泥S值越大,综合燃烧特性越好。本研究对石化剩余污泥热值焚烧利用及焚烧飞灰的处置有一定应用参考价值。
Abstract:
In order to solve the problem of sludge disposal from biological treatment of petrochemical wastewater, the feasibility of utilizing the calorific value of oil and biomass contained in it was investigated.The physicochemical properties and thermodynamic properties of sludge were characterized by XRD, FT-IR, XRD, gas chromatography and TG-DSC. The results show that, the crystal types of dry base petrochemical excess sludge are mainly α-quartz phase. The mass fraction of Cao and Fe2O3 is 39.2% and 18.6% respectively, and the content of Cl and Cr2O3 is the lowest; the sludge contains N—H group, —CO—NH—group, —CO—X—group, CO2-3 group, SiO2-4 group, SO2-4 group, etc; the content of heavy metals was relatively low, with Zn content of 50.44 mg/kg, Cu content of 2.14 mg/kg and Ni content of 6.44 mg/kg; the content of petroleum hydrocarbon is rich, m(C10—C14):m(C16—C28):m(C30—C40)is 5:18:2, and the content of oil C16—C28 is the highest, reaching 29.77 mg/kg. In the temperature range of 200—500 ℃, the weight loss rate of petrochemical excess sludge reaches the maximum, and the thermal weight loss of sludge tends to end when the temperature is above 800 ℃; The comprehensive analysis of combustion characteristics shows that, with the increase of heating rate, the ignition temperature of the sample is between 252.17—256.49 ℃. The burnout temperature, maximum weight loss rate, average weight loss rate and comprehensive burnout characteristic index S increase monotonously. The higher the S value of sludge, the better the comprehensive combustion characteristics. This study has a certain application reference value for the incineration utilization of petrochemical excess sludge and the disposal of incineration fly ash.

参考文献/References:

[1]张文艺, 戴如娟, 吴凌云, 等. 石化废水生物处理剩余污泥制备水处理滤料的研究[J]. 现代化工, 2014, 34(5): 130-133, 135.
[2]杨海, 黄新, 林子增, 等. 含油污泥处理技术研究进展[J]. 应用化工, 2019, 48(4): 907-912.
[3]FYTILI D, ZABANIOTOU A. Utilization of sewage sludge in EU application of old and new methods:a review[J]. Renewable and Sustainable Energy Reviews, 2008, 12(1): 116-140.
[4]车晓军, 屈撑囤, 郭敏俊. 含油污泥堆肥处理的研究[J]. 广州化工, 2016, 44(12): 35-37, 57.
[5]董景, 翟宇超, 刘淑慧, 等. 污水处理厂污泥土地利用的现状与发展趋势[J]. 工业安全与环保, 2013, 39(4): 43-45.
[6]JOSEPH C A, KHIARI L, GALLICHAND J, et al. Influence of sludge incineration ash on ryegrass growth and soil phosphorus status[J]. Pedosphere, 2019, 29(1): 70-81.
[7]YUI K, KURAMOCHI H, OSAKO M. Understanding the behavior of radioactive cesium during the incineration of contaminated municipal solid waste and sewage sludge by thermodynamic equilibrium calculation[J]. ACS Omega, 2018, 3(11): 15086-15099.
[8]TAN P, MA L, XIA J, et al. Co-firing sludge in a pulverized coal-fired utility boiler: combustion characteristics and economic impacts[J]. Energy, 2017, 119: 392-399.
[9]黄申斌. 城市污水处理厂剩余污泥处置的资源化利用效果研究[J]. 环境科学与管理, 2019, 44(10): 87-91.
[10]MAGALHÃES W L E, JOB A E, FERREIRA C A, et al. Pyrolysis and combustion of pulp mill lime sludge[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(2): 298-303.
[11]罗通, 吕高金, 吴芹, 等. 柠檬酸生化污泥的理化特性与热解特性研究[J]. 齐鲁工业大学学报, 2020, 34(3): 21-28.
[12]高廷耀, 顾国维, 周琪. 水污染控制工程[M]. 北京: 高等教育出版社, 2015.
[13]ZHAO S, SUN Y H, LU X, et al. Energy consumption and product release characteristics evaluation of oil shale non-isothermal pyrolysis based on TG-DSC[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106812.
[14]唐晓勇, 倪晓芳, 商照聪. 土壤中铁元素对铬元素p-XRF测定准确度的影响与校正[J]. 岩矿测试, 2020, 39(3): 467-474.
[15]MIN X B, YUAN C Y, LIANG Y J, et al. Metal recovery from sludge through the combination of hydrothermal sulfidation and flotation[J]. Procedia Environmental Sciences, 2012, 16: 401-408.
[16]王蓉, 初正崑, 宋宁宁, 等. 电动技术去除剩余污泥中重金属[J]. 农业资源与环境学报, 2019, 36(6): 798-805.
[17]吕永涛, 郑彬彬, 徒彦, 等. 微波联合过氧化氢改善剩余污泥脱水性能研究[J]. 水处理技术, 2019, 45(7): 75-79, 84.
[18]WANG S, MA C, ZHU Y, et al. Deep dewatering process of sludge by chemical conditioning and its potential influence on wastewater treatment plants[J]. Environmental Science and Pollution Research, 2019, 26(33): 33838-33846.
[19]王群, 宋怿, 孟娣, 等. 石油烃对水产品质量安全影响及风险评估[J]. 食品安全质量检测学报, 2014, 5(2): 628-633.
[20]吕全伟, 林顺洪, 柏继松, 等. 热重-红外联用(TG-FTIR)分析含油污泥-废轮胎混合热解特性[J]. 化工进展, 2017, 36(12): 4692-4699.
[21]WANG Z Y, GONG Z Q, WANG Z B, et al. Application and development of pyrolysis technology in petroleum oily sludge treatment[J]. Environmental Engineering Research, 2021, 26(1): 1-15.
[22]胡艳军, 宁方勇, 钟英杰. 城市污水污泥热解特性及动力学规律研究[J]. 热能动力工程, 2012, 27(2): 253-258, 270.
[23]金宜英, 杜欣, 王志玉, 等. 采用污水厂污泥制陶粒的烧结工艺及配方研究[J]. 中国环境科学, 2009, 29(1): 17-21.
[24]NAMKUNG H, LEE Y J, PARK J H, et al. Blending effect of sewage sludge and woody biomass into coal on combustion and ash agglomeration behavior[J]. Fuel, 2018, 225: 266-276.
[25]丘永琪. 生活污泥及工业污泥与煤混烧动力学特性实验研究[D]. 武汉: 华中科技大学, 2016.

备注/Memo

备注/Memo:
收稿日期: 2021-11-14。
基金项目: 中国石油化工股份有限公司科技计划资助项目(318024-5); 江苏省研究生实践创新计划资助项目(SJCX20_0944)。
作者简介: 张大山(1995—), 男, 江苏徐州人, 硕士生。 通信联系人: 张文艺(1968—), E-mail: zhangwenyi888@sina.com
更新日期/Last Update: 1900-01-01