参考文献/References:
[1]COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 24(5): 603-619.
[2]BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]. San Francisco: IEEE Computer Society, 2010.
[3]HENRIQUES J F, RUI C, MARTINS P, et al. High-speed tracking with kernelized correlation filter[J]. IEEE Transaction on Pattern Analysis & Machine Intelligence, 2014, 37(3): 583-596.
[4]HELD D, THRUN S, SAVARESE S. Learning to track at 100 fps with deep regression networks[C]. Santiago: Springer, 2016.
[5]MA C, HUANG J B, YANG X, et al. Hierarchical convolutional features for visual tracking[C]. Santiago: IEEE Computer Society, 2015.
[6]KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 34(7): 1409-1422.
[7]郭巳秋, 张涛, 苗锡奎. 引入样本删除机制的TLD粒子群目标跟踪[J].光学精密工程, 2019, 27(5): 1206-1217.
[8]胡欣, 高佳丽. 基于改进的TLD目标跟踪算法[J].计算机应用研究, 2019, 36(5): 1597-1600.
[9]DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]. San Diego: IEEE Computer Society, 2005.
[10]KALAL Z, MIKOLAJCZYK K, MATAS J. Forward-backward error: automatic detection of tracking failures[C]. Istanbul: IEEE Computer Society, 2010.
[11]KALAL Z, MATAS J, MIKOLAJCZYK K. Weighted sampling for large-scale boosting[C]. Leeds: British Machine Vision Association, 2008.
[12]KALAL Z, Matas J, Mikolajczyk K. Pn learning: bootstrapping binary classifiers by structural constraints[C]. San Francisco: IEEE Computer Society, 2010.
[13]OZUYSAL M, CALONDER M, LEPETIT V, et al. Fast keypoint recognition using random ferns[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010, 32(3): 448-461.
[14]宗家辉. 基于TLD框架的目标跟踪算法的研究[D]. 西安: 西安电子科技大学, 2018.
[15]WU Y, LIM J, YANG M H. Online object tracking: a benchmark[C]. Portland: IEEE Computer Society, 2013.