[1]郝永梅,吴雨佳,邢志祥,等.城市非金属管道泄漏次声波信号传播特性[J].常州大学学报(自然科学版),2022,34(01):78-85.[doi:10.3969/j.issn.2095-0411.2022.01.009]
 HAO Yongmei,WU Yujia,XING Zhixiang,et al.Propagation Characteristics of Leakage Infrasonic Waves in Urban Non-Metallic Pipe[J].Journal of Changzhou University(Natural Science Edition),2022,34(01):78-85.[doi:10.3969/j.issn.2095-0411.2022.01.009]
点击复制

城市非金属管道泄漏次声波信号传播特性()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第34卷
期数:
2022年01期
页码:
78-85
栏目:
其他
出版日期:
2022-01-28

文章信息/Info

Title:
Propagation Characteristics of Leakage Infrasonic Waves in Urban Non-Metallic Pipe
文章编号:
2095-0411(2022)01-0078-08
作者:
郝永梅1吴雨佳1邢志祥1沈俊2许宁3杨健3
(1.常州大学环境与安全工程学院,江苏常州213164;2.江苏省特种设备安全监督检验研究院常州分院,江苏常州213016;3.常州港华燃气有限公司,江苏常州213161)
Author(s):
HAO Yongmei1 WU Yujia1 XING Zhixiang1 SHEN Jun2 XU Ning3 YANG Jian3
(1.School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China; 2.Branch of Changzhou Jiangsu Special Equipment Safety Supervision and Inspection Institute, Changzhou 213016, China; 3.Changzhou Ganghua Gas Co., Ltd., Changz
关键词:
管道泄漏 次声波信号 数值模拟 频谱特性 衰减特性
Keywords:
pipeline leakage infrasound wave signal numerical simulation spectrum characteristics attenuation characteristics
分类号:
X 933
DOI:
10.3969/j.issn.2095-0411.2022.01.009
文献标志码:
A
摘要:
为研究城市管道泄漏次声波信号的传播规律, 通过COMSOL Multiphysics软件建立非金属管道二维模型, 揭示管道次声波泄漏信号的频谱特性和衰减规律。模拟结果表明:气体管道泄漏次声波信号能量主要分布于1 Hz和17 Hz, 泄漏孔径越大, 管内压力越大, 其能量越趋向于17 Hz, 而液体管道泄漏次声波信号能量主要分布于1 Hz; 管道稳态运行时, 管内次声波信号随传播距离的增加而近似成指数衰减, 管内介质密度越小, 次声波信号衰减越大, 且次声波泄漏信号在介质水中衰减速度较空气中的快; 泄漏孔径大小对次声波信号衰减影响不大。
Abstract:
In order to study the propagation rules of leakage infrasound signals from urban pipelines, COMSOL Multiphysics was used to establish 2D non-metallic pipeline models, and reveal the spectrum characteristics and attenuation characteristics of the infrasound wave signal. The simulation results shows that the energy of the leakage infrasonic signal of the gas pipeline is mainly distributed in 1 Hz and 17 Hz. The larger the leakage aperture, the greater the pressure, and the more its energy tends to be 17 Hz. The energy of the leakage infrasonic signal of liquid pipeline is mainly distributed in 1 Hz. During the steady operation of the pipeline, the infrasonic signal in the pipeline decays exponetially with the increase of propagation distance. The smaller the density of the medium in the pipeline, the greater the attenuation of the infrasound signal, and the attenuation speed of the leakage of infrasound signal in water is faster than that in gas. The size of the leakage aperture has little effect on the attenuation of the infrasonic wave.

参考文献/References:

[1]MUGGLETON J M, BRENNAN M J. Leak noise propagation and attenuation in submerged plastic water pipes[J]. Journal of Sound and Vibration, 2004, 278(3): 527-537.
[2]ZHANG X, ZHANG K, WU R Y. Research on hydraulic model establishment of water supply network[J]. Advanced Materials Research, 2014, 1073/1074/1075/1076: 1027-1030.
[3]谭建勇. 供水管道泄漏检测与定位系统的设计与实现[D]. 南京: 南京邮电大学, 2018.
[4]梁洪卫, 刘冬冬, 阚玲玲, 等. 基于VMD改进算法的气体管道泄漏检测[J]. 吉林大学学报(信息科学版), 2019, 37(5): 490-496.
[5]顾明生. 管道泄漏次声波信号分析方法研究[D]. 徐州: 中国矿业大学, 2017.
[6]王燕. 管道泄漏次声信号分析与定位算法的研究及实现[D]. 西安: 西安电子科技大学, 2018.
[7]WANG Y Q, WAN S, ZHOU Y C, et al. Research on technology of gas pipeline leakage detection based on infrasonic wave[J]. Applied Mechanics and Materials, 2013, 401(3): 1106-1109.
[8]刘翠伟, 敬华飞, 方丽萍, 等. 输气管道泄漏声波衰减模型的理论研究[J]. 振动与冲击, 2018, 37(20): 109-114.
[9]付俊涛, 李玉星, 李雨桐, 等. 输气管道泄漏音波的产生及传播特性[J]. 油气储运, 2012, 31(8): 604-611.
[10]金浩, 张来斌, 梁伟, 等. 天然气管道泄漏声源特性及传播机理数值模拟[J]. 石油学报, 2014, 35(1): 172-177.
[11]刘翠伟, 敬华飞, 方丽萍, 等. 输气管道泄漏声波衰减模型的理论研究[J]. 振动与冲击, 2018, 37(20): 109-114.
[12]刘翠伟, 李玉星, 李雪洁, 等. 基于CFD模拟的输气管道阀门流噪声仿真[J]. 油气储运, 2012, 31(9): 657-662.
[13]韩军, 郝志勇, 刘月辉, 等. 柴油机表面噪声的声强测量与分析[J]. 汽车工程, 2003, 25(3): 272-274.
[14]王桂增, 叶昊. 流体输送管道的泄漏检测与定位[M]. 北京: 清华大学出版社, 2010.
[15]BENMANSOUR R, HABIB M A, KHALIFA A, et al. Computational fluid dynamic simulation of small leaks in water pipelines for direct leak pressure transduction[J]. Computers & Fluids, 2012, 57: 110-123.
[16]叶迎春, 张来斌, 王金江. 输气管道泄漏声源特性及其变化规律[J]. 天然气工业, 2016, 36(8):124-131.
[17]李萍, 徐中慧, 李娜, 等. 雷诺实验的COMSOL_Multiphysics模拟[J]. 系统仿真技术, 2018, 14(3):169-171, 230.
[18]NAGY P B, SIMONETTI F, INSTANES G. Corrosion and erosion monitoring in plates and pipes using constant group velocity Lamb wave inspection[J]. Ultrasonics, 2014, 54(7): 1832-1841.
[19]WANG H K, YU Y, YU J X, et al. Numerical simulation of the erosion of pipe bends considering fluid-induced stress and surface scar evolution[J]. Wear, 2019, 21(5): 440-441.
[20]GAO Y, BRENNAN M, JOSEPH P F. On the effects of reflections on time delay estimation for leak detection in buried plastic water pipes[J]. Journal of Sound and Vibration, 2009, 325(5): 649-663.
[21]QIAO Q, CHENG G X, LI Y, et al. Corrosion failure analyses of an elbow and an elbow-to-pipe weld in a natural gas gathering pipeline[J]. Engineering Failure Analysis, 2017, 82(1): 599-616.
[22]LIU C W, LI Y X, FU J T, et al. Experimental study on acoustic propagation-characteristics-based leak location method for natural gas pipelines[J]. Process Safety and Environmental Protection, 2015, 96(3): 43-60.
[23]LIU C W, LI Y X, LING Y M, et al. Study on leak-acoustics generation mechanism for natural gas pipelines[J]. Journal of Loss Prevention in the Process Industries, 2014, 32: 174-181.
[24]KIM M S, LEE S K. Detection of leak acoustic signal in buried gas pipe based on the time-frequency analysis[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(6): 990-994.

相似文献/References:

[1]李爱英,王凯全,邵 辉.管道泄漏监测技术及其研究进展[J].常州大学学报(自然科学版),2002,(04):14.
 LI Ai -ying,WANG Kai -quan,SHAO Hui.Detecting Technology of Pipeline Leakage and Its Progress in Research[J].Journal of Changzhou University(Natural Science Edition),2002,(01):14.

备注/Memo

备注/Memo:
收稿日期: 2021-06-29。
基金项目: 国家重点研发计划资助子项目(2019YFC0810700); 江苏省重点研究发展计划资助(BE2018642); 江苏省研究生科研创新资助项目(KYCX20_2584)。
作者简介: 郝永梅(1970—), 女, 重庆人, 硕士, 教授。通信联系人: 邢志祥(1967—), E-mail: xingzhixiang@cczu.edu.cn
更新日期/Last Update: 1900-01-01