[1]张后甫,郝晓琼,银凤翔,等.Ni/de-ZSM催化剂的制备及其氨分解制氢性能[J].常州大学学报(自然科学版),2022,34(02):8-18.[doi:10.3969/j.issn.2095-0411.2022.02.002]
 ZHANG Houfu,HAO Xiaoqiong,YIN Fengxiang,et al.Preparation of Ni/de-ZSM Catalyst and Its Performance in Hydrogen Production by Ammonia Decomposition[J].Journal of Changzhou University(Natural Science Edition),2022,34(02):8-18.[doi:10.3969/j.issn.2095-0411.2022.02.002]
点击复制

Ni/de-ZSM催化剂的制备及其氨分解制氢性能()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第34卷
期数:
2022年02期
页码:
8-18
栏目:
化学化工
出版日期:
2022-03-28

文章信息/Info

Title:
Preparation of Ni/de-ZSM Catalyst and Its Performance in Hydrogen Production by Ammonia Decomposition
文章编号:
2095-0411(2022)02-0008-11
作者:
张后甫郝晓琼银凤翔李国儒何小波
(常州大学石油化工学院,江苏常州213164;江苏省绿色催化材料与技术重点实验室(常州大学),江苏常州213164)
Author(s):
ZHANG Houfu HAO Xiaoqiong YIN Fengxiang LI Guoru HE Xiaobo
(School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China)
关键词:
氨分解 ZSM-5分子筛 制氢 催化剂
Keywords:
Ni ammonia decomposition ZSM-5 zeolite hydrogen production catalyst
分类号:
TK 8
DOI:
10.3969/j.issn.2095-0411.2022.02.002
文献标志码:
A
摘要:
通过浸渍法制备了一系列Ni/de-ZSM催化剂,对合成的催化剂进行了XRD,TEM,H2-TPR,XPS,BET表征和氨分解制氢性能评价。结果表明当Ni的质量分数达到5%时,5%Ni/de-ZSM中Ni纳米颗粒高度分散且催化活性最佳。在650 ℃,空速为30 000 mL/(h·g)时,氨分解转化率高达90%,氢气生成速率达28.41 mmol/(min·g),且催化稳定性良好,可高效催化氨分解长达40 h。
Abstract:
A series of Ni/de-ZSM(the de-aluminized ZSM is named as de-ZSM)catalysts were prepared by impregnation method, the catalysts were characterized by XRD, TEM, H2-TPR, XPS, BET, and their performance of ammonia decomposition to produce hydrogen has also been investigated. The results show that when the loading amount of Ni reaches 5%, Ni nanoparticles in the 5%Ni/de-ZSM catalyst are highly dispersed and the catalytic activity is the best. When temperature rises to 650 ℃ and the space velocity is 30 000 mL/(h·g), the conversion rate of ammonia decomposition is as high as 90%, the hydrogen generation rate reaches 28.41 mmol/(min·g). The catalyst also shows excellent catalytic stability, which can effectively catalyze the ammonia decomposition up to 40 h.

参考文献/References:

[1]COOK T R, DOGUTAN D K, REECE S Y, et al. Solar energy supply and storage for the legacy and nonlegacy worlds[J]. Chemical Reviews, 2010, 110(11): 6474-6502.
[2]王东军, 姜伟, 赵仲阳, 等. 国内外工业化制氢技术的研究进展[J]. 工业催化, 2018, 26(5): 26-30.
[3]ZHANG Y, QIU W B, MA Y J, et al. High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions[J]. ACS Catalysis, 2018, 8(9): 8540-8544.
[4]徐也茗, 郑传明, 张韫宏. 氨能源作为清洁能源的应用前景[J]. 化学通报, 2019, 82(3): 214-220.
[5]王一帆, 段学志, 吴炜, 等. 管壳式自热型氨分解反应器模拟分析[J]. 化工学报, 2015, 66(8): 3169-3176.
[6]孙长航, 陈鑫, 李鑫, 等. 处理方法对多壁碳纳米管结构及负载Ru催化剂氨分解反应活性的影响[J]. 分子催化, 2019, 33(5): 453-460.
[7]李路, 刘灵惠, 徐金铭, 等. 负载钌的氮掺杂石墨烯催化剂的制备及应用[J]. 化工学报, 2020, 71(10): 4800-4807.
[8]聂天明, 宋文静, 赵佳文, 等. 原位限域Ru-SiO2的制备及其氨分解性能研究[J]. 化工新型材料, 2020, 48(8): 203-207.
[9]蒋红华, 王亚运, 王帅, 等. 氨分解制氢镍基催化剂的制备和应用[J]. 化工生产与技术, 2020, 26(1): 5-7, 22.
[10]常秋连, 李培霖, 陈松清, 等. 金属元素改性的超高温氨分解催化剂Ni/Mg-Al的结构及性能[J]. 石油炼制与化工, 2020, 51(2): 25-30.
[11]林志峰, 胡日茗, 周晓龙. 镍基催化剂的研究进展[J]. 化工学报, 2017, 68(s1): 26-36.
[12]VARISLI D, KORKUSUZ C, DOGU T. Microwave-assisted ammonia decomposition reaction over iron incorporated mesoporous carbon catalysts[J]. Applied Catalysis B: Environmental, 2017, 201: 370-380.
[13]LI L, JIANG R Y, CHU W, et al. Cobalt nanoparticles embedded in a porous carbon matrix as an efficient catalyst for ammonia decomposition[J]. Catalysis Science & Technology, 2017, 7(6): 1363-1371.
[14]PODILA S, ALHAMED Y A, ALZAHRANI A A, et al. Hydrogen production by ammonia decomposition using Co catalyst supported on Mg mixed oxide systems[J]. International Journal of Hydrogen Energy, 2015, 40(45): 15411-15422.
[15]GOLUBINA E V, LOKTEVA E S, EROKHIN A V, et al. The role of metal-support interaction in catalytic activity of nanodiamond-supported nickel in selective phenylacetylene hydrogenation[J]. Journal of Catalysis, 2016, 344: 90-99.
[16]GU Y Q, MA Y L, LONG Z Y, et al. One-pot synthesis of supported Ni@Al2O3 catalysts with uniform small-sized Ni for hydrogen generation via ammonia decomposition[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4045-4054.
[17]HE S F, MEI Z Q, LIU N S, et al. Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming: effect of nickel precursor[J]. International Journal of Hydrogen Energy, 2017, 42(21): 14429-14438.
[18]DENG Q F, ZHANG H, HOU X X, et al. High-surface-area Ce0.8Zr0.2O2 solid solutions supported Ni catalysts for ammonia decomposition to hydrogen[J]. International Journal of Hydrogen Energy, 2012, 37(21): 15901-15907.
[19]HU Z P, WENG C C, CHEN C, et al. Catalytic decomposition of ammonia to COx-free hydrogen over Ni/ZSM-5 catalysts: a comparative study of the preparation methods[J]. Applied Catalysis A: General, 2018, 562: 49-57.
[20]GU Y Q, JIN Z, ZHANG H, et al. Transition metal nanoparticles dispersed in an alumina matrix as active and stable catalysts for COx-free hydrogen production from ammonia[J]. Journal of Materials Chemistry A, 2015, 3(33): 17172-17180.
[21]HU X C, WANG W W, JIN Z, et al. Transition metal nanoparticles supported La-promoted MgO as catalysts for hydrogen production via catalytic decomposition of ammonia[J]. Journal of Energy Chemistry, 2019, 38: 41-49.
[22]HENPRASERTTAE S, CHAROJROCHKUL S, LAWTRAKUL L, et al. Ni-based catalysts for hydrogen production from ammonia decomposition: effect of dopants and urine application[J]. ChemistrySelect, 2018, 3(42): 11842-11850.
[23]SIMA D W, WU H J, TIAN K K, et al. Enhanced low temperature catalytic activity of Ni/Al-Ce0.8Zr0.2O2 for hydrogen production from ammonia decomposition[J]. International Journal of Hydrogen Energy, 2020, 45(16): 9342-9352.
[24]NAKAMURA I, FUJITANI T. Role of metal oxide supports in NH3 decomposition over Ni catalysts[J]. Applied Catalysis A: General, 2016, 524: 45-49.
[25]SIMONSEN S B, CHAKRABORTY D, CHORKENDORFF I, et al. Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition[J]. Applied Catalysis A: General, 2012, 447/448: 22-31.
[26]VARISLI D, KAYKAC N G. Hydrogen from ammonia over cobalt incorporated silicate structured catalysts prepared using different cobalt salts[J]. International Journal of Hydrogen Energy, 2016, 41(14): 5955-5968.
[27]MENG F H, LI X, LI M H, et al. Catalytic performance of CO methanation over La-promoted Ni/Al2O3 catalyst in a slurry-bed reactor[J]. Chemical Engineering Journal, 2017, 313: 1548-1555.
[28]ZHOU G L, LIU H R, CUI K K, et al. Methanation of carbon dioxide over Ni/CeO2 catalysts: effects of support CeO2 structure[J]. International Journal of Hydrogen Energy, 2017, 42(25): 16108-16117.
[29]CHEN F Y, WU C F, DONG L S, et al. Characteristics and catalytic properties of Ni/CaAlOx catalyst for hydrogen-enriched syngas production from pyrolysis-steam reforming of biomass sawdust[J]. Applied Catalysis B: Environmental, 2016, 183: 168-175.
[30]SUN X L, YAN C L, CHEN Y, et al. Three-dimensionally “curved” NiO nanomembranes as ultrahigh rate capability anodes for Li-ion batteries with long cycle lifetimes[J]. Advanced Energy Materials, 2014, 4(4): 1300912.
[31]MAI Y J, TU J P, XIA X H, et al. Co-doped NiO nanoflake arrays toward superior anode materials for lithium ion batteries[J]. Journal of Power Sources, 2011, 196(15): 6388-6393.
[32]LUCENTINI I, CASANOVAS A, LLORCA J. Catalytic ammonia decomposition for hydrogen production on Ni, Ru and NiRu supported on CeO2[J]. International Journal of Hydrogen Energy, 2019, 44(25): 12693-12707.
[33]MOUNTAPMBEME KOUOTOU P, WAQAS M, EL KASMI A, et al. Influence of Co addition on Ni-Co mixed oxide catalysts toward the deep oxidation of low-rank unsaturated hydrocarbons[J]. Applied Catalysis A: General, 2021, 612: 117990.
[34]ATSUMI R, NODA R, TAKAGI H, et al. Ammonia decomposition activity over Ni/SiO2 catalysts with different pore diameters[J]. International Journal of Hydrogen Energy, 2014, 39(26): 13954-13961.
[35]OKURA K, MIYAZAKI K, MUROYAMA H, et al. Ammonia decomposition over Ni catalysts supported on perovskite-type oxides for the on-site generation of hydrogen[J]. RSC Advances, 2018, 8(56): 32102-32110.
[36]JI J, DUAN X Z, QIAN G, et al. Fe particles on the tops of carbon nanofibers immobilized on structured carbon microfibers for ammonia decomposition[J]. Catalysis Today, 2013, 216: 254-260.
[37]TSENG J C, GU D, PISTIDDA C, et al. Tracking the active catalyst for iron-based ammonia decomposition by in situ synchrotron diffraction studies[J]. ChemCatChem, 2018, 10(19): 4465-4472.
[38]KRAUPNER A, ANTONIETTI M, PALKOVITS R, et al. Mesoporous Fe3C sponges as magnetic supports and as heterogeneous catalyst[J]. Journal of Materials Chemistry, 2010, 20(29): 6019.
[39]LARA-GARCÍA H A, MENDOZA-NIETO J A, PFEIFFER H, et al. COx-free hydrogen production from ammonia on novel cobalt catalysts supported on 1D titanate nanotubes[J]. International Journal of Hydrogen Energy, 2019, 44(57): 30062-30074.
[40]CAO J L, YAN Z L, DENG Q F, et al. Mesoporous modified-red-mud supported Ni catalysts for ammonia decomposition to hydrogen[J]. International Journal of Hydrogen Energy, 2014, 39(11): 5747-5755.
[41]JU X H, LIU L, YU P, et al. Mesoporous Ru/MgO prepared by a deposition-precipitation method as highly active catalyst for producing COx-free hydrogen from ammonia decomposition[J]. Applied Catalysis B: Environmental, 2017, 211: 167-175.
(责任编辑:谭晓荷)

相似文献/References:

[1]张智宏,王玉峰,张少瑜.光度法测定镍含量存在的问题[J].常州大学学报(自然科学版),2010,(01):57.
 ZHANG Zhi -ho ng,WANG Yu -feng,ZHANG Shao -yu.Problems on Measuring Content of Nickel by Spectrophotometry[J].Journal of Changzhou University(Natural Science Edition),2010,(02):57.
[2]王茂华,汤庆华,姚 超,等.金属Ni 掺杂对中间相碳微球/ 石墨复合材料烧结性能的影响[J].常州大学学报(自然科学版),2010,(03):13.
 WANG Mao- hua,T ANG Qing- hua,YAO Chao,et al.Effect of Ni Dopant on the Sintering Behavior of MCMB/Graphite Composite[J].Journal of Changzhou University(Natural Science Edition),2010,(02):13.
[3]周维友,潘九高,吴中,等.含Ni类水滑石催化氧气选择性氧化醇到醛[J].常州大学学报(自然科学版),2016,(04):1.[doi:10.3969/j.issn.2095-0411.2016.04.001]
 ZHOU Weiyou,PAN Jiugao,WU Zhong,et al.Selective Oxidation of Alcohol to Aldehyde with Oxygen under Ni-Containing Hydrotalcites[J].Journal of Changzhou University(Natural Science Edition),2016,(02):1.[doi:10.3969/j.issn.2095-0411.2016.04.001]
[4]王 非,毕研帅,方启华,等.一步法制备火龙果型Ni/C用于肉桂醛加氢反应[J].常州大学学报(自然科学版),2019,31(06):11.
 WANG Fei,BI Yanshuai,FANG Qihua,et al.A Facile One-Pot Synthesis of Dragon Fruit-Like Ni/C Composites Using Glucose as Template for Selective Hydrogenation of Cinnamaldehyde[J].Journal of Changzhou University(Natural Science Edition),2019,31(02):11.

备注/Memo

备注/Memo:
收稿日期: 2021-10-27。
基金项目: 国家自然科学基金资助项目(22078027)。
作者简介: 张后甫(1997—), 男, 安徽宿州人, 硕士生。通信联系人: 银凤翔(1975—), E-mail: yinfx@cczu.edu.cn
更新日期/Last Update: 1900-01-01