[1]孟瑞云,姚水良.载体形貌对乙酸废水臭氧催化氧化矿化影响[J].常州大学学报(自然科学版),2022,34(02):38-44.[doi:10.3969/j.issn.2095-0411.2022.02.005]
 MENG Ruiyun,YAO Shuiliang.Effect of Support Morphology on Catalytic Ozonation Mineralization of Acetic Acid Wastewater[J].Journal of Changzhou University(Natural Science Edition),2022,34(02):38-44.[doi:10.3969/j.issn.2095-0411.2022.02.005]
点击复制

载体形貌对乙酸废水臭氧催化氧化矿化影响()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第34卷
期数:
2022年02期
页码:
38-44
栏目:
环境科学与工程
出版日期:
2022-03-28

文章信息/Info

Title:
Effect of Support Morphology on Catalytic Ozonation Mineralization of Acetic Acid Wastewater
文章编号:
2095-0411(2022)02-0038-07
作者:
孟瑞云姚水良
(常州大学环境与安全工程学院,江苏常州213164)
Author(s):
MENG Ruiyun YAO Shuiliang
(School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China)
关键词:
乙酸 臭氧氧化 二氧化锰催化剂 载体形貌 能量效率
Keywords:
acetic acid ozonation MnO2 catalyst support morphology energy efficiency
分类号:
X 78
DOI:
10.3969/j.issn.2095-0411.2022.02.005
文献标志码:
A
摘要:
在有机废水氧化处理过程中常产生乙酸等小分子有机酸,其在羧基的α位上有甲基,难以矿化。研究采用MnO2为活性成分,以不同形貌(粉末状、球状和蜂窝状)γ-Al2O3为载体制备了3种催化剂,考察了室温臭氧气体鼓泡条件下载体形貌对乙酸降解和矿化的影响。结果显示,粉末状、蜂窝状和球状γ-Al2O3载体催化剂的乙酸矿化率分别为89.0%,54.6%,38.7%,能量效率分别为13.7,11.2,7.0 g/(kW·h),说明粉末状γ-Al2O3做载体制得的MnO2催化剂是乙酸矿化的最佳催化剂。
Abstract:
Small molecular organic acids such as acetic acid are often produced in the oxidation treatment of organic wastewater, the acetic acid is difficult to be mineralized due to the presence of α-position methyl group on the carboxyl group. In this study, three catalysts are prepared from MnO2 as the active component and γ-Al2O3 with different morphologies(powder, honeycomb and sphere)as the support to investigate the effect of support morphology on MnO2 catalytic ozonation mineralization of acetic acid via ozone gas bubbling at room temperature. The results show that using the MnO2 catalysts with powder, honeycomb, and spherical γ-Al2O3 supports, the acetic acid mineralization is 89.0%, 54.6%, 38.7%, and the energy efficiencies are 13.7, 11.2, 7.0 g/(kW·h), respectively, indicating that the MnO2 catalyst with the powder γ-Al2O3 support is the best catalyst for acetic acid mineralization.

参考文献/References:

[1]WISNIEWSKI M, PIERZCHALSKA M. Recovery of carboxylic acids C1—C3 with organophosphine oxide solvating extractants[J]. Journal of Chemical Technology & Biotechnology, 2005, 80(12): 1425-1430.
[2]SHAN L L, ZHANG Z H, YU Y L, et al. Performance of CSTR-EGSB-SBR system for treating sulfate-rich cellulosic ethanol wastewater and microbial community analysis[J]. Environmental Science and Pollution Research, 2017, 24(16): 14387-14395.
[3]CENTI G, PERATHONER S, TORRE T, et al. Catalytic wet oxidation with H2O2 of carboxylic acids on homogeneous and heterogeneous Fenton-type catalysts[J]. Catalysis Today, 2000, 55(1/2): 61-69.
[4]YU J, LI H, LIU H Z. Recovery of acetic acid over water by pervaporation with a combination of hydrophobic ionic liquids[J]. Chemical Engineering Communications, 2006, 193(11): 1422-1430.
[5]ZHANG H H, LAN X Y, BAI P, et al. Adsorptive removal of acetic acid from water with metal-organic frameworks[J]. Chemical Engineering Research and Design, 2016, 111: 127-137.
[6]高雯, 张凤娥, 董良飞, 等. 臭氧、超声与生物质组合调理污泥脱水性能研究[J]. 常州大学学报(自然科学版), 2016, 28(1): 78-82.
[7]蔡华, 李克林, 陈毅忠, 等. 活性炭催化臭氧氧化深度处理印染废水[J]. 常州大学学报(自然科学版), 2010, 22(3): 38-41.
[8]ZHAO J J, LIU M X, LIANG M W, et al. Organics wastewater degradation by a mesoporous chromium-functionalized γ-Al2O3 with H2O2 assistance[J]. Water, Air, & Soil Pollution, 2018, 229(4): 1-11.
[9]MALIK S N, GHOSH P C, VAIDYA A N, et al. Hybrid ozonation process for industrial wastewater treatment, principles and applications: a review[J]. Journal of Water Process Engineering, 2020, 35: 101193.
[10]NUR M, RESTIWIJAYA M, MUCHLISIN Z, et al. Power consumption analysis{DBD}plasma ozone generator[J]. Journal of Physics: Conference Series, 2016, 776: 012101.
[11]CHEN W R, LI X K, PAN Z Q, et al. Effective mineralization of diclofenac by catalytic ozonation using Fe-MCM-41 catalyst[J]. Chemical Engineering Journal, 2016, 304: 594-601.
[12]SUI M H, SHENG L, LU K X, et al. FeOOH catalytic ozonation of oxalic acid and the effect of phosphate binding on its catalytic activity[J]. Applied Catalysis B: Environmental, 2010, 96(1/2): 94-100.
[13]肖早早, 李沛怡, 吴波, 等. MnO2/γ-Al2O3催化剂的制备及催化臭氧氧化苯酚废水[J]. 应用化工, 2020, 49(5): 1143-1147.
[14]JIANG B Q, XU K, LI J, et al. Effect of supports on plasma catalytic decomposition of toluene using in situ plasma DRIFTS[J]. Journal of Hazardous Materials, 2021, 405: 124203.
(责任编辑:谭晓荷)

相似文献/References:

[1]张秋亚,徐凯琳,许筠,等.g-C3N4可见光-臭氧催化氧化降解二苯甲酮-4[J].常州大学学报(自然科学版),2022,34(03):54.[doi:10.3969/j.issn.2095-0411.2022.03.008]
 ZHANG Qiuya,XU Kailin,XU Jun,et al.Visible-Light-Driven Photocatalytic Ozonation for Degradation of Organic Sunscreen BP-4[J].Journal of Changzhou University(Natural Science Edition),2022,34(02):54.[doi:10.3969/j.issn.2095-0411.2022.03.008]

备注/Memo

备注/Memo:
收稿日期: 2021-12-26。
基金项目: 江苏省研究生科研与实践创新计划资助项目(KYCX20_2602); 江苏省科技厅资助项目(BE2018022)。
作者简介: 孟瑞云(1997—), 女, 江苏高邮人, 硕士生。 通信联系人: 姚水良(1963—), E-mail: yaos@cczu.edu.cn
更新日期/Last Update: 1900-01-01