[1]刘楠楠,胡彤,唐伟,等.低矿化度水/月桂酰胺丙基羟磺酸甜菜碱复配溶液驱油技术研究[J].常州大学学报(自然科学版),2022,34(02):74-80.[doi:10.3969/j.issn.2095-0411.2022.02.009]
 LIU Nannan,HU Tong,TANG Wei,et al.Displacement Technology Investigation of Low Salinity Water and Lauramide Propyl Hydroxybetaine Sulfonate Complex Solution[J].Journal of Changzhou University(Natural Science Edition),2022,34(02):74-80.[doi:10.3969/j.issn.2095-0411.2022.02.009]
点击复制

低矿化度水/月桂酰胺丙基羟磺酸甜菜碱复配溶液驱油技术研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第34卷
期数:
2022年02期
页码:
74-80
栏目:
石油与天然气工程
出版日期:
2022-03-28

文章信息/Info

Title:
Displacement Technology Investigation of Low Salinity Water and Lauramide Propyl Hydroxybetaine Sulfonate Complex Solution
文章编号:
2095-0411(2022)02-0074-07
作者:
刘楠楠1胡彤2唐伟3陈炎1徐慧1庄加玮1邵明鲁1夏敏1邓伟1
(1.常州大学石油工程学院,江苏常州213164;2.常州纺织服装职业技术学院创意学院,江苏常州213164;3.聊城市产品质量监督检验所,山东聊城252000)
Author(s):
LIU Nannan1 HU Tong2 TANG Wei3 CHEN Yan1 XU Hui1 ZHUANG Jiawei1 SHAO Minglu1 XIA Min1 DENG Wei1
(1. School of Petroleum Engineering, Changzhou University, Changzhou 213164, China; 2. College for Creative Studies, Changzhou Vocational Institute of Textile and Garment, Changzhou 213164, China; 3. Liaocheng Institue of Product Quality Supervision & Inspection, Liaocheng 252000, China)
关键词:
低矿化度水 高矿化度水 两性表面活性剂 低渗透油藏 提高采收率
Keywords:
low salinity water high salinity water ampholytic surfactant low permeability reservoir enhanced oil recovery
分类号:
TE 39
DOI:
10.3969/j.issn.2095-0411.2022.02.009
文献标志码:
A
摘要:
针对老油田开发过程中含水率高、采收率低等问题,选用低矿化度水和两性表面活性剂月桂酰胺丙基羟磺酸甜菜碱(LHSB)溶液为注入流体,通过基础参数量化和物理模拟实验手段研究了流体在低渗多孔介质中的驱油特征及流动特性。研究结果表明,低矿化度水环境中的LHSB溶液与岩石表面的作用性更强,使得原油流动的阻力更小,采收率更高。分别测定了低矿化度水(2 500 mg/L)和高矿化度水(25 000 mg/L)在岩石表面的润湿接触角分别为72°和83°; 而在低矿化度下LHSB溶液通过岩石表面前后之间的吸附量差值为26.33%,高矿化度水环境中LHSB的吸附损失量为15.24%,与原油界面张力为0.007 5 mN/m。岩心驱替提高采收率实验结果表明,高/低矿化度水驱的采收率分别为33.4%和35.5%; 高矿化度水驱后转注低矿化度水和LHSB的复配溶液,其采收率提高了6.5%; 低矿化度水驱后转注低矿化度表面活性剂驱可提高采收率10.4%,总采收率为45.9%。因此,低矿化度水与LHSB表面活性剂的复配体系能够提高原油采收率,为低渗油藏开发提供科学理论依据,对油田高效开发剩余油具有指导意义。
Abstract:
In allusion to the problems of high moisture content and low recovery efficiency in the process of oilfield development, low salinity water and lauramide propyl hydroxybetaine sulfonate(LHSB)used as the ampholytic surfactant were selected as the injection fluids to carry out the oil displacement. The displacement characteristics and flow properties of the fluid in low permeability porous media were studied by quantization of basic parameters and physical simulation experiments. The results showed that the stronger interaction between the LHBS and rock surface in low salinity water resulted in lower flow resistance and higher recovery rate. The wetting contact angles of low salinity water(2 500 mg/L)and high salinity water(25 000 mg/L)on the rock surface were measured to be 72° and 83°, respectively. The difference of adsorption capacity was 26.33% at low salinity and the loss of adsorption capacity of LHSB solution in high salinity water was 15.24% in contrast to the solution of LHSB passing through the rock surface before and after. The interfacial tension between LHSB and crude oil was 0.007 5 mN/m. The experimental results showed that the recovery efficiency of high salinity water flooding and low salinity water flooding was 33.4% and 35.5%, respectively. After flooding with high salinity water, the recovery rate of the combination solution composited by low salinity water and LHSB improved by 6.5%. After low salinity water flooding, the recovery rate increased by 10.4% through low salinity surfactant flooding, and total recovery rate was 45.9%. Therefore, the system of low salinity water /LHSB dispersions could improve oil recovery and provide scientific theoretical basis for the development of low permeability reservoirs, which had guiding significance for the efficient development of the remaining oil in oil fields.

参考文献/References:

[1]吴剑, 常毓文, 李嘉, 等. 低矿化度水驱技术增产机理与适用条件[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 145-151.
[2]王平, 姜瑞忠, 王公昌, 等. 低矿化度水驱研究进展及展望[J]. 岩性油气藏, 2012, 24(2): 106-110.
[3]曲世元, 姜汉桥, 李俊键, 等. 低矿化度水驱提高采收率影响因素研究[J]. 应用化工, 2021, 50(2): 307-310, 330.
[4]陈斌, 唐恩高, 黄波, 等. 低矿化度水驱提高原油采收率的机理分析及研究进展[J]. 中外能源, 2020, 25(6): 39-45.
[5]孔若水. 低矿化度水驱油机理研究[D]. 北京: 中国地质大学(北京), 2017.
[6]李俊键, 姜汉桥, 周代余, 等. 古油藏低矿化度水驱微观剩余油动用机理实验研究[J]. 油气地质与采收率, 2018, 25(5): 104-109.
[7]杨冰冰. X油田特高含水期低矿化度水驱提高采收率研究[J]. 化学工程与装备, 2018, 256(5): 104-106.
[8]HADIA N J, HANSEN T, TWEHEYO M T, et al. Influence of crude oil components on recovery by high and low salinity waterflooding[J]. Energy and Fuels, 2012, 26(7): 4328-4335.
[9]周治岳, 温中林, 杨伟, 等. 低矿化度水驱后聚合物驱提高采收率实验[J]. 断块油气田, 2019, 26(6): 771-774.
[10]刘楠楠, 鞠斌山, 陈常红, 等. 新型抗温LN-1泡排棒的研制及应用评价[J]. 中国科技论文, 2016, 11(3): 341-345.
[11]张建国. 低矿化度水/表面活性剂复合驱提高采收率技术[J]. 断块油气田, 2019, 26(5): 609-612, 637.
[12]栗原君, 夏楠, 李艳萍. 低矿化度水及十六烷基羟丙基磺基甜菜碱表面活性剂的驱油作用[J]. 油田化学, 2016, 33(3): 487-491.
[13]李振泉, 延辉, 宋新旺, 等. 磺基甜菜碱两性表面活性剂的结构性质[J]. 化学学报, 2011, 69(8): 898-904.
(责任编辑:殷丽莉)

备注/Memo

备注/Memo:
收稿日期: 2021-09-09。
基金项目: 常州市科技项目应用基础研究计划(CJ20210120); 2021年常州大学科研启动项目(ZMF21020056)。
作者简介: 刘楠楠(1990—), 男, 山东泰安人, 博士, 讲师。E-mail: liunn2020@cczu.edu.cn
更新日期/Last Update: 1900-01-01