参考文献/References:
[1]时志强, 樊丽萍, 王成扬. 商业化的锂离子电池石墨负极材料的研究进展[J]. 炭素, 2006(1): 3-6.
[2]黄燕华, 韩响, 陈松岩. 锂离子电池硅基负极材料的研究进展[J]. 闽南师范大学学报(自然科学版), 2015, 28(2): 68-74.
[3]白旻, 张旻昱, 王晓超. 碳中和背景下全球新能源汽车产业发展政策与趋势[J]. 信息技术与标准化, 2021, 12(1): 13-20.
[4]常增花, 王建涛, 李文进, 等. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[5]杜霞, 薛卫东, 赵睿, 等. 石墨烯/硅负极材料的制备及其电化学性能的研究[J]. 化工科技, 2013, 21(5): 17-23.
[6]陆浩, 李金熠, 刘柏男, 等. 锂离子电池纳米硅碳负极材料研发进展[J]. 储能科学与技术, 2017, 6(5): 864-870.
[7]聂平, 徐桂银, 蒋江民, 等. 预锂化技术及其在高比能硅负极中的应用[J]. 储能科学与技术, 2017, 6(5): 889-903.
[8]赵云, 亢玉琼, 金玉红, 等. 锂离子电池硅基负极及其相关材料[J]. 化学进展, 2019, 31(4): 613-630.
[9]吴军雄, 秦显营, 梁葛萌, 等. 锂离子电池硅/碳复合网状整体电极的制备与性能[J]. 新型炭材料, 2016, 31(3): 321-327.
[10]LIANG G M, QIN X Y, ZOU J S, et al. Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities[J]. Carbon, 2018, 127: 424-431.
[11]HOELTGEN C, LEE J E, JANG B Y. Stepwise carbon growth on Si/SiOx core-shell nanoparticles and its effects on the microstructures and electrochemical properties for high-performance lithium-ion battery's anode[J]. Electrochimica Acta, 2016, 222: 535-542.
[12]YANG C, ZHANG Y L, ZHOU J H, et al. Hollow Si/SiOx nanosphere/nitrogen-doped carbon superstructure with a double shell and void for high-rate and long-life lithium-ion storage[J]. Journal of Materials Chemistry A, 2018, 6(17): 8039-8046.
[13]LI Y K, LIU W B, LONG Z, et al. Si@C microsphere composite with multiple buffer structures for high-performance lithium-ion battery anodes[J]. Chemistry(Weinheim an Der Bergstrasse, Germany), 2018, 24(49): 12912-12919.
[14]PARK M, JUNG Y J, KIM J, et al. Synergistic effect of carbon nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery[J]. Nano Letters, 2013, 13(10): 4833-4839.
[15]WU G S, MA L C, LIU L, et al. Interfacially reinforced methylphenylsilicone resin composites by chemically grafting multiwall carbon nanotubes onto carbon fibers[J]. Composites Part B: Engineering, 2015, 82: 50-58.
[16]SIROTTI F, DE SANTIS M, ROSSI G. Synchrotron-radiation photoemission and X-ray absorption of Fe silicides[J]. Physical Review B, Condensed Matter, 1993, 48(11): 8299-8306.
[17]YU X R, HANTSCHE H. Vertical differential charging in monochromatized small spot X-ray photoelectron spectroscopy[J]. Surface and Interface Analysis, 1993, 20(7): 555-558.
[18]YAMAMOTO H, BABA Y J, SASAKI T A. Electronic structures of N2+ and O2+ ion-implanted Si(100)[J]. Surface and Interface Analysis, 1995, 23(6): 381-385.
[19]WANG W, KUMTA P N. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes[J]. ACS Nano, 2010, 4(4): 2233-2241.
[20]XIAO L S, SEHLLEIER Y H, DOBROWOLNY S, et al. Novel Si-CNT/polyaniline nanocomposites as lithium-ion battery anodes for improved cycling performance[J]. Materials Today: Proceedings, 2017, 4: S263-S268.
[21]WANG B, RYU J, CHOI S, et al. Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities[J]. ACS Nano, 2019, 13(2): 2307-2315.
[22]LI J B, WANG L, LIU F M, et al. In situ wrapping SiO with carbon nanotubes as anode material for high-performance Li-ion batteries[J]. ChemistrySelect, 2019, 4(10): 2918-2925.
[23]YANG D D, SHI J, SHI J H, et al. Simple synthesis of Si/Sn@C-G anodes with enhanced electrochemical properties for Li-ion batteries[J]. Electrochimica Acta, 2018, 259: 1081-1088.
[24]FANG G, DENG X L, ZOU J Z, et al. Amorphous/ordered dual carbon coated silicon nanoparticles as anode to enhance cycle performance in lithium ion batteries[J]. Electrochimica Acta, 2019, 295: 498-506.
[25]WANG J, LIU D H, WANG Y Y, et al. Dual-carbon enhanced silicon-based composite as superior anode material for lithium ion batteries[J]. Journal of Power Sources, 2016, 307: 738-745.
[26]XU Y L, SWAANS E, CHEN S B, et al. A high-performance Li-ion anode from direct deposition of Si nanoparticles[J]. Nano Energy, 2017, 38: 477-485.