[1]李建斌,陈金媛,任玉荣,等.喷雾干燥法制备线球状SiO/CNTs复合负极材料[J].常州大学学报(自然科学版),2022,34(03):26-36.[doi:10.3969/j.issn.2095-0411.2022.03.005]
 LI Jianbin,CHEN Jinyuan,REN Yurong,et al.Fabrication of Yarn-Ball Structured SiO/CNTs Anode by Spray Drying Method[J].Journal of Changzhou University(Natural Science Edition),2022,34(03):26-36.[doi:10.3969/j.issn.2095-0411.2022.03.005]
点击复制

喷雾干燥法制备线球状SiO/CNTs复合负极材料()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第34卷
期数:
2022年03期
页码:
26-36
栏目:
材料科学与工程
出版日期:
2022-05-28

文章信息/Info

Title:
Fabrication of Yarn-Ball Structured SiO/CNTs Anode by Spray Drying Method
文章编号:
2095-0411(2022)03-0026-11
作者:
李建斌123陈金媛1任玉荣123彭工厂4黄小兵5袁红东6
(1.常州大学材料科学与工程学院,江苏常州213164;2.江苏省新能源汽车动力电池制造技术工程研究中心(常州大学),江苏常州213164;3.常州市动力电池智能制造高技术重点实验室(常州大学),江苏常州213164;4.中国科学院成都有机化学研究所,四川成都610041;5.湖南文理学院化学与材料工程学院,湖南常德415000;6.常州百利锂电智慧工厂有限公司,江苏常州213022)
Author(s):
LI Jianbin123 CHEN Jinyuan1 REN Yurong123 PENG Gongchang4 HUANG Xiaobing5YUAN Hongdong6
(1.School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; 2.Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou 213164, China; 3.Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou 213164, China; 4.Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China; 5.College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China; 6.Changzhou Baili Lithium Battery Smart Factory Co., Ltd., Changzhou 213022, China)
关键词:
氧化亚硅 碳纳米管 负极材料 锂离子电池 喷雾干燥技术
Keywords:
silicon monoxide carbon nanotubes anode lithium-ion battery spray drying
分类号:
TM 912.9
DOI:
10.3969/j.issn.2095-0411.2022.03.005
文献标志码:
A
摘要:
以氧化亚硅(SiO)和碳纳米管(CNTs)为原料,采用喷雾干燥技术一步制备了线球状的SiO/CNTs复合负极材料,从SEM和TEM图中,可以观察到SiO微米片团聚形成二次类球型颗粒,CNTs包覆在SiO片上形成线球状结构。一方面,CNTs可以作为包覆层缓解SiO在脱嵌锂过程中的体积膨胀效应; 另一方面,CNTs作为导电骨架可以有效提高复合材料的导电性,有利于电极材料容量的发挥。当CNTs的质量分数为15%时,SiO/CNTs复合负极材料发挥出最佳电化学性能,在500 mA/g的电流密度下循环300圈之后,可逆比容量为633 mA·h/g,容量保持率为62.2%。
Abstract:
The yarn-ball structured SiO/CNTs composites were obtained by spray drying method. As revealed in SEM and TEM images, SiO agglomerates to form secondary spherical particles, and CNTs are coated on the surface of SiO to form the yarn-ball structured material. On the one hand, CNTs can absorb the volume change stress of SiO during the cycling process. On the other hand, CNTs serve as a conductive network, it can improve the conductivity of the overall material and reduce the electrochemical impedance, which is more conducive to deliver the capacity. Among a series of samples, 15% CNTs mass fraction in SiO/CNTs has the best electrochemical performance. After 300 cycles at 500 mA/g, it still delivers a reversible specific capacity of 633 mA·h/g, and the capacity retention is 62.2%.

参考文献/References:

[1]时志强, 樊丽萍, 王成扬. 商业化的锂离子电池石墨负极材料的研究进展[J]. 炭素, 2006(1): 3-6.
[2]黄燕华, 韩响, 陈松岩. 锂离子电池硅基负极材料的研究进展[J]. 闽南师范大学学报(自然科学版), 2015, 28(2): 68-74.
[3]白旻, 张旻昱, 王晓超. 碳中和背景下全球新能源汽车产业发展政策与趋势[J]. 信息技术与标准化, 2021, 12(1): 13-20.
[4]常增花, 王建涛, 李文进, 等. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[5]杜霞, 薛卫东, 赵睿, 等. 石墨烯/硅负极材料的制备及其电化学性能的研究[J]. 化工科技, 2013, 21(5): 17-23.
[6]陆浩, 李金熠, 刘柏男, 等. 锂离子电池纳米硅碳负极材料研发进展[J]. 储能科学与技术, 2017, 6(5): 864-870.
[7]聂平, 徐桂银, 蒋江民, 等. 预锂化技术及其在高比能硅负极中的应用[J]. 储能科学与技术, 2017, 6(5): 889-903.
[8]赵云, 亢玉琼, 金玉红, 等. 锂离子电池硅基负极及其相关材料[J]. 化学进展, 2019, 31(4): 613-630.
[9]吴军雄, 秦显营, 梁葛萌, 等. 锂离子电池硅/碳复合网状整体电极的制备与性能[J]. 新型炭材料, 2016, 31(3): 321-327.
[10]LIANG G M, QIN X Y, ZOU J S, et al. Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities[J]. Carbon, 2018, 127: 424-431.
[11]HOELTGEN C, LEE J E, JANG B Y. Stepwise carbon growth on Si/SiOx core-shell nanoparticles and its effects on the microstructures and electrochemical properties for high-performance lithium-ion battery's anode[J]. Electrochimica Acta, 2016, 222: 535-542.
[12]YANG C, ZHANG Y L, ZHOU J H, et al. Hollow Si/SiOx nanosphere/nitrogen-doped carbon superstructure with a double shell and void for high-rate and long-life lithium-ion storage[J]. Journal of Materials Chemistry A, 2018, 6(17): 8039-8046.
[13]LI Y K, LIU W B, LONG Z, et al. Si@C microsphere composite with multiple buffer structures for high-performance lithium-ion battery anodes[J]. Chemistry(Weinheim an Der Bergstrasse, Germany), 2018, 24(49): 12912-12919.
[14]PARK M, JUNG Y J, KIM J, et al. Synergistic effect of carbon nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery[J]. Nano Letters, 2013, 13(10): 4833-4839.
[15]WU G S, MA L C, LIU L, et al. Interfacially reinforced methylphenylsilicone resin composites by chemically grafting multiwall carbon nanotubes onto carbon fibers[J]. Composites Part B: Engineering, 2015, 82: 50-58.
[16]SIROTTI F, DE SANTIS M, ROSSI G. Synchrotron-radiation photoemission and X-ray absorption of Fe silicides[J]. Physical Review B, Condensed Matter, 1993, 48(11): 8299-8306.
[17]YU X R, HANTSCHE H. Vertical differential charging in monochromatized small spot X-ray photoelectron spectroscopy[J]. Surface and Interface Analysis, 1993, 20(7): 555-558.
[18]YAMAMOTO H, BABA Y J, SASAKI T A. Electronic structures of N2+ and O2+ ion-implanted Si(100)[J]. Surface and Interface Analysis, 1995, 23(6): 381-385.
[19]WANG W, KUMTA P N. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes[J]. ACS Nano, 2010, 4(4): 2233-2241.
[20]XIAO L S, SEHLLEIER Y H, DOBROWOLNY S, et al. Novel Si-CNT/polyaniline nanocomposites as lithium-ion battery anodes for improved cycling performance[J]. Materials Today: Proceedings, 2017, 4: S263-S268.
[21]WANG B, RYU J, CHOI S, et al. Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities[J]. ACS Nano, 2019, 13(2): 2307-2315.
[22]LI J B, WANG L, LIU F M, et al. In situ wrapping SiO with carbon nanotubes as anode material for high-performance Li-ion batteries[J]. ChemistrySelect, 2019, 4(10): 2918-2925.
[23]YANG D D, SHI J, SHI J H, et al. Simple synthesis of Si/Sn@C-G anodes with enhanced electrochemical properties for Li-ion batteries[J]. Electrochimica Acta, 2018, 259: 1081-1088.
[24]FANG G, DENG X L, ZOU J Z, et al. Amorphous/ordered dual carbon coated silicon nanoparticles as anode to enhance cycle performance in lithium ion batteries[J]. Electrochimica Acta, 2019, 295: 498-506.
[25]WANG J, LIU D H, WANG Y Y, et al. Dual-carbon enhanced silicon-based composite as superior anode material for lithium ion batteries[J]. Journal of Power Sources, 2016, 307: 738-745.
[26]XU Y L, SWAANS E, CHEN S B, et al. A high-performance Li-ion anode from direct deposition of Si nanoparticles[J]. Nano Energy, 2017, 38: 477-485.

备注/Memo

备注/Memo:
收稿日期: 2021-12-31。
基金项目: 国家自然科学基金资助项目(22078029); 江苏省双创资助项目(JSSCBS20210881)。
作者简介: 李建斌(1990—), 男, 山东临沂人, 博士, 讲师。通信联系人: 任玉荣(1973—), E-mail: ryrchem@cczu.edu.cn
更新日期/Last Update: 1900-01-01