[1]张秋亚,徐凯琳,许筠,等.g-C3N4可见光-臭氧催化氧化降解二苯甲酮-4[J].常州大学学报(自然科学版),2022,34(03):54-63.[doi:10.3969/j.issn.2095-0411.2022.03.008]
 ZHANG Qiuya,XU Kailin,XU Jun,et al.Visible-Light-Driven Photocatalytic Ozonation for Degradation of Organic Sunscreen BP-4[J].Journal of Changzhou University(Natural Science Edition),2022,34(03):54-63.[doi:10.3969/j.issn.2095-0411.2022.03.008]
点击复制

g-C3N4可见光-臭氧催化氧化降解二苯甲酮-4()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第34卷
期数:
2022年03期
页码:
54-63
栏目:
环境科学与工程
出版日期:
2022-05-28

文章信息/Info

Title:
Visible-Light-Driven Photocatalytic Ozonation for Degradation of Organic Sunscreen BP-4
文章编号:
2095-0411(2022)03-0054-10
作者:
张秋亚徐凯琳许筠王利平卜一鸣
(常州大学环境与安全工程学院,江苏常州213164)
Author(s):
ZHANG Qiuya XU Kailin XU Jun WANG Liping BO Yiming
(School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China)
关键词:
二苯甲酮(BP-4) 光催化 臭氧氧化 去除率 风险评价
Keywords:
benzophenone(BP-4) photocatalysis ozone oxidation removal rate risk assessment
分类号:
X 703
DOI:
10.3969/j.issn.2095-0411.2022.03.008
文献标志码:
A
摘要:
二苯甲酮-4(Benzophenone-4, BP-4)是常用的有机防晒剂,广泛存在于环境介质,对人体健康和生态安全产生严重威胁。分别考察单一g-C3N4光催化和臭氧氧化降解BP-4的最佳反应条件,探明光催化臭氧氧化耦合工艺对BP-4的去除效能,并对降解溶液生态风险进行评估。结果表明,单一g-C3N4光催化和单一臭氧氧化技术对BP-4去除率分别为53.3%和32.4%; 光催化臭氧氧化耦合技术对BP-4降解具有协同作用,去除率达79.6%,且符合准一级反应动力学。BP-4降解溶液的发光菌抑制率增强,具有潜在生态风险。
Abstract:
Benzophenone-4(BP-4), a commonly used organic sunscreen, is widely found in environmental media and poses a serious threat to human health and ecological safety. In this study, the optimal reaction conditions for degradation of BP-4 by single g-C3N4 photocatalysis and ozone oxidation were specified respectively, and the removal efficiency of BP-4 by photocatalysis and ozone oxidation coupled process was investigated, and especially, the ecological risk of degradation solution was evaluated. The results showed that the removal of BP-4 by single g-C3N4 photocatalysis and single ozonation were 53.3% and 32.4%, respectively. Photocatalytic ozonation coupling had a synergistic effect on the degradation of BP-4, and the removal was up to 79.6%, which was consistent with the pseudo-first order reaction kinetics. The inhibition rate of bioluminescent bacteria in BP-4 degradation solution was enhanced, which had potential ecological risk.

参考文献/References:

[1]PENG X Z, JIN J B, WANG C W, et al. Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2015, 1384: 97-106.
[2]DANOVARO R, BONGIORNI L, CORINALDESI C, et al. Sunscreens cause coral bleaching by promoting viral infections[J]. Environmental Health Perspectives, 2008, 116(4): 441-447.
[3]AO J J, YUAN T, GAO L, et al. Organic UV filters exposure induces the production of inflammatory cytokines in human macrophages[J]. The Science of the Total Environment, 2018, 635: 926-935.
[4]TSUI M M, LEUNG H W, WAI T C, et al. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries[J]. Water Research, 2014, 67: 55-65.
[5]APEL C, JOERSS H, EBINGHAUS R. Environmental occurrence and hazard of organic UV stabilizers and UV filters in the sediment of European North and Baltic Seas[J]. Chemosphere, 2018, 212: 254-261.
[6]WU M H, XIE D G, XU G, et al. Benzophenone-type UV filters in surface waters: an assessment of profiles and ecological risks in Shanghai, China[J]. Ecotoxicology and Environmental Safety, 2017, 141: 235-241.
[7]RODIL R, QUINTANA J B, LÓPEZ-MAHÍA P, et al. Multiclass determination of sunscreen chemicals in water samples by liquid chromatography-tandem mass spectrometry[J]. Analytical Chemistry, 2008, 80(4): 1307-1315.
[8]HE T T, TSUI M M P, TAN C J, et al. Comparative toxicities of four benzophenone ultraviolet filters to two life stages of two coral species[J]. The Science of the Total Environment, 2019, 651(2): 2391-2399.
[9]LEE S H, XIONG J Q, RU S G, et al. Toxicity of benzophenone-3 and its biodegradation in a freshwater microalga scenedesmus obliquus[J]. Journal of Hazardous Materials, 2020, 389: 122149.
[10]MAO F J, HE Y L, GIN K Y H. Antioxidant responses in cyanobacterium microcystis aeruginosa caused by two commonly used UV filters, benzophenone-1 and benzophenone-3, at environmentally relevant concentrations[J]. Journal of Hazardous Materials, 2020, 396: 122587.
[11]陆光华, 李晟, 宗永臣, 等. 鲫鱼对水中有机防晒剂的富集及代谢酶响应[J]. 中国环境科学, 2017, 37(9): 3576-3582.
[12]ZHANG Q Y, MA X Y, DZAKPASU M, et al. Evaluation of ecotoxicological effects of benzophenone UV filters: luminescent bacteria toxicity, genotoxicity and hormonal activity[J]. Ecotoxicology and Environmental Safety, 2017, 142: 338-347.
[13]ZHANG Q Y, MA X Y, WANG X C, et al. Assessment of multiple hormone activities of a UV-filter(octocrylene)in zebrafish(Danio rerio)[J]. Chemosphere, 2016, 159: 433-441.
[14]王晓雪, 高建平, 赵瑞茹, 等. g-C3N4纳米管的制备及其光催化降解性能[J]. 无机化学学报, 2018, 34(6): 1059-1064.
[15]刘成琪, 王利平, 朱晓峰. 微波辅助法合成S掺杂g-C3N4降解孔雀石绿染料废水[J]. 常州大学学报(自然科学版), 2016, 28(2): 50-54.
[16]蒋善庆, 曹宇, 马佳慧, 等. Ag3VO4/g-C3N4复合材料可见光催化降解MC-LR的性能[J]. 常州大学学报(自然科学版), 2020, 32(5): 8-16, 26.
[17]代志刚, 蔺庆伟, 易科浪, 等. 杭州西湖浮游植物群落对沉水植物恢复的响应[J]. 水生态学杂志, 2017, 38(5): 35-45.
[18]NAWROCKI J, KASPRZYK-HORDERN B. The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 27-42.
[19]何锦垚, 魏健, 张嘉雯, 等. 臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水[J]. 环境工程学报, 2019, 13(10): 2385-2392.
[20]XIAO J D, XIE Y B, NAWAZ F, et al. Super synergy between photocatalysis and ozonation using bulk g-C3N4 as catalyst: a potential sunlight/O3/g-C3N4 method for efficient water decontamination[J]. Applied Catalysis B: Environmental, 2016, 181: 420-428.
[21]黄立英. 可见光响应型石墨相氮化碳复合材料的制备及其降解有机污染物研究[D]. 镇江: 江苏大学, 2013.
[22]孟雅丽. g-C3N4的合成及其光催化研究[D]. 大连: 大连理工大学, 2011.
[23]LI H T, LI N, WANG M, et al. Synthesis of novel and stable g-C3N4-Bi2WO6 hybrid nanocomposites and their enhanced photocatalytic activity under visible light irradiation[J]. Royal Society Open Science, 2018, 5(3): 171419.
[24]ASADZADEH-KHANEGHAH S, HABIBI-YANGJEH A, YUBUTA K. Novel g-C3N4 nanosheets/CDs/BiOCl photocatalysts with exceptional activity under visible light[J]. Journal of the American Ceramic Society, 2019, 102(3): 1435-1453.
[25]LIU X, ZHANG J, DONG Y M, et al. A facile approach for the synthesis of Z-scheme photocatalyst ZIF-8/g-C3N4 with highly enhanced photocatalytic activity under simulated sunlight[J]. New Journal of Chemistry, 2018, 42(14): 12180-12187.
[26]陈崧哲, 张彭义, 祝万鹏, 等. 可见光响应光催化剂研究进展[J]. 化学进展, 2004, 16(4): 613-619.
[27]VIONE D, MAURINO V, MINERO C, et al. Phenol chlorination and photochlorination in the presence of chloride ions in homogeneous aqueous solution[J]. Environmental Science & Technology, 2005, 39(13): 5066-5075.
[28]ZHOU J B, LIU W, CAI W Q. The synergistic effect of Ag/AgCl@ZIF-8 modified g-C3N4 composite and peroxymonosulfate for the enhanced visible-light photocatalytic degradation of levofloxacin[J]. Science of the Total Environment, 2019, 696: 133962.
[29]叶琳嫣. 催化臭氧氧化深度处理肝素钠制药废水研究[D]. 成都: 西南交通大学, 2014.
[30]MARTÍNEZ-HUITLE C A, ANDRADE L S. Electrocatalysis in wastewater treatment: recent mechanism advances[J]. Química Nova, 2011, 34(5): 850-858.
[31]WANG Y, WANG X C, ANTONIETTI M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angewandte Chemie(International Ed in English), 2012, 51(1): 68-89.
[32]赵振悦. 可见光催化-臭氧催化氧化联用降解酚类污染物[D]. 武汉: 武汉科技大学, 2020.
[33]董玉明, 王光丽, 蒋平平, 等. 陶瓷粉体催化臭氧化降解水中苯酚[J]. 水处理技术, 2010, 36(10): 28-31.
[34]侯颖, 徐锦明, 李平, 等. Fe/Ag催化臭氧氧化降解苯酚的研究[J]. 现代地质, 2021, 35(3): 711-719.
[35]LIU H, SUN P, LIU H X, et al. Acute toxicity of benzophenone-type UV filters for photobacterium phosphoreum and Daphnia Magna: QSAR analysis, inter species relationship and integrated assessment[J]. Chemosphere, 2015, 135: 182-188.
[36]LIU H, SUN P, HE Q, et al. Ozonation of the UV filter benzophenone-4 in aquatic environments: intermediates and pathways[J]. Chemosphere, 2016, 149: 76-83.

相似文献/References:

[1]刘淑赟,董如林,陈智栋,等.纳米粒子修饰TiO2薄膜的制备及其光致亲水性能[J].常州大学学报(自然科学版),2012,(03):14.
 LIU Shu-yun,DONG Ru-lin,CHEN Zhi-dong,et al.Preparation of Nano-Size Particle Modified TiO2 Film and its Photoinduced Hydrophilicty[J].Journal of Changzhou University(Natural Science Edition),2012,(03):14.
[2]张智宏,宋封琦.铁屑过滤- 光催化氧化处理染料废水[J].常州大学学报(自然科学版),2003,(03):27.
 ZHANG Zhi- hong,ZONG Feng- qi.T reatm ent of D ye Wast ew at er w it h Ir on Chips Filt rat ion- pho t ocataly t ic D eg radat ion Pro cess[J].Journal of Changzhou University(Natural Science Edition),2003,(03):27.
[3]彭勇刚,纪俊玲,汪媛,等.ZnSn(OH)6/氧化石墨烯复合材料的水热合成及其光催化性能[J].常州大学学报(自然科学版),2016,(04):25.[doi:10.3969/j.issn.2095-0411.2016.04.005]
 PENG Yonggang,JI Junling,WANG Yuan,et al.Hydrothermal Preparation of ZnSn(OH)6/GO Composites and Their Photocatalytic Activities[J].Journal of Changzhou University(Natural Science Edition),2016,(03):25.[doi:10.3969/j.issn.2095-0411.2016.04.005]
[4]杨辉龙,段家骥,张福长,等.ZnO/石墨烯复合材料的制备及其光催化性能[J].常州大学学报(自然科学版),2017,(03):13.[doi:10.3969/j.issn.2095-0411.2017.03.003]
 YANG Huilong,DUAN Jiaji,ZHANG Fuchang,et al.Preparation and Study of Photocatalytic Properties of the Composite Materials of Zinc Oxide/Graphene[J].Journal of Changzhou University(Natural Science Edition),2017,(03):13.[doi:10.3969/j.issn.2095-0411.2017.03.003]
[5]邬纯晶,杨 超,曹剑瑜,等.水热法合成NCQD/BiOCl复合物及其光催化分解水性能[J].常州大学学报(自然科学版),2018,30(03):41.[doi:10.3969/j.issn.2095-0411.2018.03.005]
 WU Chunjing,YANG Chao,CAO Jianyu,et al.Hydrothermal Synthesis of NCQD/BiOCl Composites and Their Efficient Photocatalytic Performances for Hydrogen Production from Water[J].Journal of Changzhou University(Natural Science Edition),2018,30(03):41.[doi:10.3969/j.issn.2095-0411.2018.03.005]
[6]周 满,侯楚珺,陈敬文,等.碳层修饰3DOM-TiO2材料的可控合成及光催化性能研究[J].常州大学学报(自然科学版),2019,31(05):24.[doi:10.3969/j.issn.2095-0411.2019.05.004]
 ZHOU Man,HOU Chujun,CHEN Jingwen,et al.Controlled Synthesis of 3DOM-TiO2 Modified by Carbon Layers for Photocatalytic Application[J].Journal of Changzhou University(Natural Science Edition),2019,31(03):24.[doi:10.3969/j.issn.2095-0411.2019.05.004]
[7]程 飞,毛辉麾,任颖瑜,等.磁性层次复合碳质纳米微球的制备及其光催化性能研究[J].常州大学学报(自然科学版),2019,31(05):42.[doi:10.3969/j.issn.2095-0411.2019.05.007]
 CHENG Fei,MAO Huihui,REN Yingyu,et al.Preparation of Magnetic Hierarchical Carbonaceous Nano Sphere and Photocatalytic Properties Study[J].Journal of Changzhou University(Natural Science Edition),2019,31(03):42.[doi:10.3969/j.issn.2095-0411.2019.05.007]
[8]封金财,孙 浩,朱平华,等.气凝胶砂浆及其复合混凝土研究[J].常州大学学报(自然科学版),2020,32(01):70.[doi:10.3969/j.issn.2095-0411.2020.01.011]
 FENG Jincai,SUN Hao,ZHU Pinghua,et al.Review of Mortar and Concrete Composite Incorporated with Aerogel Super-Insulator or Photocatalytic Materials[J].Journal of Changzhou University(Natural Science Edition),2020,32(03):70.[doi:10.3969/j.issn.2095-0411.2020.01.011]
[9]冯正宇,张建宇,毛辉麾.水热法制备Fe3O4@C/GQDs/AgBr复合纳米材料及其光催化性能[J].常州大学学报(自然科学版),2020,32(05):17.[doi:10.3969/j.issn.2095-0411.2020.05.003]
 FENG Zhengyu,ZHANG Jianyu,MAO Huihui.Synthesis of Fe3O4@C/GQDs/AgBr Nano-Composites by Hydrothermal Treatment Method and Its Photocatalytic Properties Research[J].Journal of Changzhou University(Natural Science Edition),2020,32(03):17.[doi:10.3969/j.issn.2095-0411.2020.05.003]
[10]石绍明,王亚文,毛辉麾,等.黏土多孔材料负载纳米质子化氮化碳(g-C3N4)及其增强光催化性能研究[J].常州大学学报(自然科学版),2021,33(03):24.[doi:10.3969/j.issn.2095-0411.2021.03.004]
 SHI Shaoming,WANG Yawen,MAO Huihui,et al.Synthesis of Clay-Based Porous Materials Loaded Protonated Nano g-C3N4 and Application in Enhance of Photocatalysis[J].Journal of Changzhou University(Natural Science Edition),2021,33(03):24.[doi:10.3969/j.issn.2095-0411.2021.03.004]

备注/Memo

备注/Memo:
收稿日期: 2022-02-14。
基金项目: 常州大学自然科学基金资助项目(ZMF19020388)。
作者简介: 张秋亚(1988—), 女, 河南周口人, 博士, 讲师。 E-mail: qiuya@cczu.edu.cn
更新日期/Last Update: 1900-01-01