[1]赵斌成,占明飞,侯君霞,等.“一步法”聚环氧琥珀酸(PESA)的合成及缓蚀阻垢机理分析[J].常州大学学报(自然科学版),2022,34(03):64-73.[doi:10.3969/j.issn.2095-0411.2022.03.009]
 ZHAO Bincheng,ZHAN Mingfei,HOU Junxia,et al.Synthesis of One Step Polyepoxysuccinic Acid(PESA)and Analysis of Corrosion and Scale Inhibition Mechanism[J].Journal of Changzhou University(Natural Science Edition),2022,34(03):64-73.[doi:10.3969/j.issn.2095-0411.2022.03.009]
点击复制

“一步法”聚环氧琥珀酸(PESA)的合成及缓蚀阻垢机理分析()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第34卷
期数:
2022年03期
页码:
64-73
栏目:
环境科学与工程
出版日期:
2022-05-28

文章信息/Info

Title:
Synthesis of One Step Polyepoxysuccinic Acid(PESA)and Analysis of Corrosion and Scale Inhibition Mechanism
文章编号:
2095-0411(2022)03-0064-10
作者:
赵斌成占明飞侯君霞张文艺
(常州大学环境与安全工程学院,江苏常州213164)
Author(s):
ZHAO Bincheng ZHAN Mingfei HOU Junxia ZHANG Wenyi
(School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China)
关键词:
工业循环冷却水 无磷缓蚀阻垢剂 聚环氧琥珀酸 机理分析
Keywords:
industrial circulating cooling water phosphorus-free corrosion and scale inhibitor polyepoxysuccinic acid mechanism analysis
分类号:
X 703
DOI:
10.3969/j.issn.2095-0411.2022.03.009
文献标志码:
A
摘要:
针对工业生产循环冷却系统广泛使用磷系缓蚀阻垢剂造成的磷元素排放污染问题,以马来酸酐为主要原料,氢氧化钙为引发剂,采用“一步法”合成工艺,合成了一种无磷缓蚀阻垢剂,通过红外光谱与核磁共振分析,表明所合成的无磷缓蚀阻垢剂是聚环氧琥珀酸(PESA)。通过旋转挂片法与碳酸钙沉积法研究了PESA在不同条件下的缓蚀阻垢性能。结果表明,PESA在投加量110 mg/L、循环水温度低于45 ℃、pH在中性或碱性条件下、水流转速小于85 r/min时,PESA对A3碳钢腐蚀率小于0.248 mm/a,最大缓蚀率可达60.9%,最大阻垢率近100%。同时通过电导率仪、红外光谱、扫描电镜等手段对PESA的缓蚀阻垢作用机理进行了分析,结果表明PESA是通过分散、螯合及晶格畸变来实现阻垢性能的,是通过在金属表面生成一层保护膜,阻止发生腐蚀的电子转移,防止金属腐蚀的。
Abstract:
Aiming at the problem of phosphorus emission pollution caused by the widespread use of phosphorus-based corrosion and scale inhibitors in industrial production circulating cooling systems, maleic anhydride is used as the main raw material, calcium hydroxide is used as the initiator, and a “one-step” synthesis process is used to synthesize a phosphorus-free corrosion and scale inhibitor, through infrared spectrum analysis and nuclear magnetic resonance spectrum analysis, which shows that the synthesized phosphorus-free corrosion and scale inhibitor is polyepoxysuccinic acid(PESA). Through infrared spectrum analysis and nuclear magnetic resonance spectrum analysis, it is shown that the synthesized product is PESA. The corrosion and scale inhibition performance of PESA under different conditions was studied by rotating coupon method and calcium carbonate deposition method. The results show that the dosage of PESA is 110 mg/L, the circulating water temperature is lower than 45 ℃, and the pH is neutral or alkaline. Under normal conditions, when the water flow speed is less than 85 r/min, the corrosion rate of PESA to A3 carbon steel is less than 0.248 mm/a, the maximum corrosion inhibition rate can reach 60.9%, and the maximum scale inhibition rate is nearly 100%. At the same time, the corrosion and scale inhibition mechanism of PESA was analyzed by means of conductivity meter, infrared spectroscopy, scanning electron microscope, etc. The results show that PESA achieves scale inhibition performance through dispersion, chelation and lattice distortion. A protective film is formed on the surface to prevent the transfer of corroded electrons, thereby preventing metal corrosion.

参考文献/References:

[1]WANG H C, ZHOU Y M, YAO Q Z, et al. Calcium sulfate precipitation studies with fluorescent-tagged scale inhibitor for cooling water systems[J]. Polymer Bulletin, 2015, 72(9): 2171-2188.
[2]CHAUSSEMIER M, POURMOHTASHAM E, GELUS D, et al. State of art of natural inhibitors of calcium carbonate scaling, a review article[J]. Desalination, 2015, 356: 47-55.
[3]胡灿英. 火电厂循环冷却水阻垢方法研究进展[J]. 广州化工, 2017, 45(24): 53-54, 90.
[4]时利香, 王信粉, 李薇, 等. 循环冷却水系统新型缓蚀剂应用进展[J]. 应用化工, 2019, 48(10): 2427-2430.
[5]解玉峰. 污水回用循环水低磷缓蚀阻垢剂的性能研究及应用[J]. 南昌航空大学学报(自然科学版), 2017, 31(2): 103-108.
[6]王朝霞. 河流水体富营养化的影响因素及水质变化分析[J]. 农业与技术, 2020, 40(14): 117-118.
[7]张玉玲, 赵华伟, 胡志光, 等. 有机磷系阻垢缓蚀剂的降解对循环冷却水系统影响的预测[J]. 工业水处理, 2015, 35(6): 10-14.
[8]朱明淏, 白加德, 靳旭. 浅谈水质富营养化成因[J]. 环境保护前沿, 2019, 9(6): 885-888.
[9]LI X C, GAO B Y, YUE Q Y, et al. Effect of six kinds of scale inhibitors on calcium carbonate precipitation in high salinity wastewater at high temperatures[J]. Journal of Environmental Sciences(China), 2015, 29: 124-130.
[10]POPURI S R, HALL C, WANG C C, et al. Development of green/biodegradable polymers for water scaling applications[J]. International Biodeterioration & Biodegradation, 2014, 95: 225-231.
[11]陈维忠, 张晓冬, 岳云怡, 等. 一种低磷高效缓蚀阻垢剂的研究与应用[J]. 当代化工, 2017, 46(7): 1340-1342.
[12]李合友. 循环水无磷缓蚀阻垢剂在大型燃机电厂的应用研究[J]. 东北电力技术, 2019, 40(8): 11-14.
[13]LIU D, DONG W B, LI F T, et al. Comparative performance of polyepoxysuccinic acid and polyaspartic acid on scaling inhibition by static and rapid controlled precipitation methods[J]. Desalination, 2012, 304: 1-10.
[14]高宝玉. 水和废水处理用复合高分子絮凝剂的研究进展[J]. 环境化学, 2011, 30(1): 337-345.
[15]张冰如, 李风亭. 聚环氧琥珀酸的多元阻垢性能[J]. 工业水处理, 2002, 22(9): 21-24.
[16]张冰如, 李辉, 李风亭, 等. 聚环氧琥珀酸对碳钢的缓蚀协同效应的研究[J]. 工业水处理, 2006, 26(2): 53-56.
[17]HUANG H H, YAO Q, JIAO Q, et al. Polyepoxysuccinic acid with hyper-branched structure as an environmentally friendly scale inhibitor and its scale inhibition mechanism[J]. Journal of Saudi Chemical Society, 2019, 23(1): 61-74.
[18]YANG L, LUO F G. Design and matrix analysis of optical switch with multicast function using general MZI[J]. Optik, 2017, 138: 166-174.
[19]张文艺, 占明飞, 姚立荣, 等. 无磷缓蚀阻垢剂CETSA的合成与缓蚀阻垢机理分析[J]. 安全与环境学报, 2015, 15(5): 209-213.
[20]曾德芳, 肖建国. 绿色缓蚀阻垢剂S-羧乙基硫代琥珀酸的合成及应用研究[J]. 工业水处理, 2010, 30(10): 21-25.
[21]WANG L C, CUI K, WANG L B, et al. The effect of ethylene oxide groups in alkyl ethoxy carboxylates on its scale inhibition performance[J]. Desalination, 2016, 379: 75-84.
[22]周晓蔚, 赵鑫. 聚环氧琥珀酸对铜缓蚀性能的研究[J]. 腐蚀科学与防护技术, 2004, 16(3): 172-174.
[23]胡晓静, 刘振法, 武秀丽, 等. 环境友好型缓蚀阻垢剂的研制及性能研究[J]. 水处理技术, 2010, 36(3): 38-41.
[24]肖建国. 水处理无磷缓蚀阻垢剂的制备及其性能研究[D]. 武汉: 武汉理工大学, 2010.
[25]杨莹琴, 段香芝, 平坤. 生物降解性阻垢剂聚环氧琥珀酸的合成及其阻垢性能研究[J]. 信阳师范学院学报(自然科学版), 2004, 17(2): 221-223.

备注/Memo

备注/Memo:
收稿日期: 2022-01-29。
基金项目: 江苏省科技支撑计划资助项目(BE2020761); 2020年江苏省研究生科研与实践创新计划资助项目(SJCX20-0942)。
作者简介: 赵斌成(1997—), 男, 江苏常州人, 硕士生。 通信联系人: 张文艺(1968—), zhangwenyi888@sina.com
更新日期/Last Update: 1900-01-01