[1]弓晓晶,许敬.浮动催化气相沉积反应器内温度与流场动力学模拟[J].常州大学学报(自然科学版),2022,34(04):1-6.[doi:10.3969/j.issn.2095-0411.2022.04.001]
 GONG Xiaojing,XU Jing.Temperature and Flow Field Fluid Dynamics Simulation in Vapor Deposition Reactor[J].Journal of Changzhou University(Natural Science Edition),2022,34(04):1-6.[doi:10.3969/j.issn.2095-0411.2022.04.001]
点击复制

浮动催化气相沉积反应器内温度与流场动力学模拟()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第34卷
期数:
2022年04期
页码:
1-6
栏目:
材料科学与工程
出版日期:
2022-07-28

文章信息/Info

Title:
Temperature and Flow Field Fluid Dynamics Simulation in Vapor Deposition Reactor
文章编号:
2095-0411(2022)04-0001-06
作者:
弓晓晶许敬
(常州大学材料科学与工程学院,江苏常州213164)
Author(s):
GONG Xiaojing XU Jing
(School of Materials Science & Engineering, Changzhou University, Changzhou 213164,China)
关键词:
碳纳米管纤维 计算流体动力学 涡流 CVD反应器
Keywords:
carbon nanotube fibers computational fluid dynamics swirling gas flow CVD reactor
分类号:
O 351.2
DOI:
10.3969/j.issn.2095-0411.2022.04.001
文献标志码:
A
摘要:
通过流体动力学模拟(CFD)计算确定了反应器内涡流的形成,研究了涡流的形成原因并通过改变管式反应器的内径和材质使涡流消失。涡流的判断可以通过格拉斯霍夫数(Gr)表示,数值模拟结果表明:管反应器的内径由70 mm减小到50 mm,Gr数趋于稳定,反应器内涡流的形成明显减弱,气流偏离中心幅度减小直至消失。通过改变管反应器的材质,减小表面温度θs和炉内温度θ之间的差值也可以达到涡流消失的目的。
Abstract:
The formation of swirl in the reactor was determined by fluid dynamic simulation(CFD)calculation, and the reason for the formation of swirl was studied. The inner diameter and material of the tubular reactor were changed to make the swirl disappear. The judgment of the swirl can be expressed by the Gr ashof number(Gr). The numerical simulation results show that the inner diameter of the tube reactor is reduced from 70 mm to 50 mm, the Gr number tends to stabilize, the formation of swirl in the reactor is obviously weakened, and the gas flow deviates from the center. The amplitude decreases until it disappears. And by changing the material of the tube reactor, reducing the difference between the surface temperature θs and the furnace temperature θ the purpose of eliminating the swirl can also be achieved.

参考文献/References:

[1] WELLER L, SMAIL F R, ELLIOTT J A, et al. Mapping the parameter space for direct-spun carbon nanotube aerogels[J]. Carbon, 2019, 146: 789-812.
[2] ZHANG M, ATKINSON K R, BAUGHMAN R H. Multifunctional carbon nanotube yarns by downsizing an ancient technology[J]. Science, 2004, 306(5700): 1358-1361.
[3] ZHANG X, JIANG K, FENG C, et al. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays[J]. Advanced Materials, 2006, 18: 1505-1510.
[4] WANG Z L, PONCHARAL P, DE HEER W A. Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM[J]. Journal of Physics and Chemistry of Solids, 2000, 61(7): 1025-1030.
[5] STALLARD J C, TAN W, SMAIL F R, et al. The mechanical and electrical properties of direct-spun carbon nanotube mats[J]. Extreme Mechanics Letters, 2018, 21: 65-75.
[6] LI Y L, KINLOCH I A, WINDLE A H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis[J]. Science, 2004, 304(5668): 276-278.
[7] 段连, 周阳, 刘春江. 多晶硅还原炉内流场及温度场的研究[J]. 化学工业与工程, 2014, 31(6): 69-74.
[8] 刘斌. 化学气相沉积制备多壁碳纳米管反应器内流场的数值模拟[J]. 工业加热, 2019, 48(4): 40-41, 44.
[9] ENDO H, KUWANA K, SAITO K, et al. CFD prediction of carbon nanotube production rate in a CVD reactor[J]. Chemical Physics Letters, 2004, 387(4/5/6): 307-311.
[10] KUWANA K, ENDO H, SAITO K, et al. Catalyst deactivation in CVD synthesis of carbon nanotubes[J]. Carbon, 2005, 43(2): 253-260.
[11] KUNADIAN I, ANDREWS R, MENGÜÇ M P, et al. Multiwalled carbon nanotube deposition profiles within a CVD reactor: an experimental study[J]. Chemical Engineering Science, 2009, 64(7): 1503-1510.
[12] 闵伟, 江五贵. 喷嘴式CVD反应器结构对碳纳米管生长影响的数值模拟[J]. 南昌航空大学学报(自然科学版), 2014, 28(3): 45-50.
[13] 余风利, 杨湘杰, 刘旭波, 等. 晶须状碳纳米管沉积炉的数值模拟及实验研究[J]. 化工新型材料, 2015, 43(7): 122-124, 130.
[14] RODILES X, REGUERO V, VILA M, et al. Carbon nanotube synthesis and spinning as macroscopic fibers assisted by the ceramic reactor tube[J]. Scientific Reports, 2019, 9(1): 9239.
[15]OH E, CHO H, KIM J, et al. Super-strong carbon nanotube fibers achieved by engineering gas flow and postsynthesis treatment[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13107-13115.
[16] 付双成, 张亚磊, 姜毓圣, 等. 卧螺离心机不同螺旋结构流场的数值模拟研究[J]. 常州大学学报(自然科学版), 2020, 32(1): 56-61.
[17] 孟繁超, 董素君, 江泓升, 等. 长时间流固耦合传热过程的快速算法[J]. 北京航空航天大学学报, 2017, 43(6): 1224-1230.
[18] 李志强, 王元, 王丽, 等. 风沙流中近床面沙粒三维运动的LES-DEM分析[J]. 空气动力学学报, 2011, 29(6): 784-788, 800.
(责任编辑:李艳)

备注/Memo

备注/Memo:
收稿日期: 2022-01-10。
基金项目: 国家自然科学基金委中德合作资助项目(GZ1257)。
作者简介: 弓晓晶(1981—), 女, 新疆昌吉人, 博士, 教授。 E-mail: gongxiaojing2018@cczu.edu.cn
更新日期/Last Update: 1900-01-01