[1]刘宗辉,冯温惠,张中泽,等.乳酸(酯)脱水制取丙烯酸催化剂及机理研究[J].常州大学学报(自然科学版),2022,34(04):14-25.[doi:10.3969/j.issn.2095-0411.2022.04.003]
 LIU Zonghui,FENG Wenhui,ZHANG Zhongze,et al.Catalysts and Mechanism of Dehydration of Lactic Acid(Lactic Ester) to Produce Acrylic Acid[J].Journal of Changzhou University(Natural Science Edition),2022,34(04):14-25.[doi:10.3969/j.issn.2095-0411.2022.04.003]
点击复制

乳酸(酯)脱水制取丙烯酸催化剂及机理研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第34卷
期数:
2022年04期
页码:
14-25
栏目:
材料科学与工程
出版日期:
2022-07-28

文章信息/Info

Title:
Catalysts and Mechanism of Dehydration of Lactic Acid(Lactic Ester) to Produce Acrylic Acid
文章编号:
2095-0411(2022)04-0014-12
作者:
刘宗辉冯温惠张中泽温哲薛冰
(常州大学石油化工学院,江苏常州213164)
Author(s):
LIU Zonghui FENG Wenhui ZHANG Zhongze WEN Zhe XUE Bing
(School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China)
关键词:
乳酸 乳酸酯 丙烯酸 酸碱催化
Keywords:
lactic acid lactic ester acrylic acid acid-base catalysis
分类号:
TQ 352
DOI:
10.3969/j.issn.2095-0411.2022.04.003
文献标志码:
A
摘要:
以生物质乳酸(酯)为原料合成丙烯酸是当前能源化工领域的研究热点之一。文章综述了近年来乳酸(酯)气相脱水制取丙烯酸的研究,重点讨论了催化剂类型(磷酸盐、硫酸盐、羟基磷灰石和分子筛)对脱水反应的影响; 并对脱水反应的机理和动力学行为进行了分析和归纳; 最后,对乳酸(酯)催化转化制取丙烯酸的发展前景进行了展望。
Abstract:
The production of acrylic acid from lactic acid(lactic esters)is one of the research hotspots in the field of energy and chemical industry. This paper reviews the research on the production of acrylic acid by dehydration of lactic acid(lactic esters)and mainly focuses on the influence of catalyst type(sulfate, phosphate, hydroxyapatite, zeolites)on the dehydration reaction. The reaction mechanism and kinetic behavior were also analyzed and summarized. Finally, the development for the catalytic conversion of lactic acid(lactic ester)to acrylic acid in the future was predicted.

参考文献/References:

[1] 崔丽凤, 侯志扬. 丙烯酸市场分析与技术发展趋势[J]. 化学工业, 2012, 30(7): 21-24.
[2] WEISSRMEL K, ARPE H J. Industrial organic chemistry[M]. 4th ed. Weinheim: Wiley-VCH, 2003: 291-296.
[3] LIN M M. Selective oxidation of propane to acrylic acid with molecular oxygen[J]. Applied Catalysis A: General, 2001, 207(1/2): 1-16.
[4] MAYO F R. Monomeric acrylic esters[J]. Journal of the American Chemical Society, 2002, 77(6): 1713-1714.
[5] 钱延龙, 缪世健. 均相催化反应进展[M]. 北京: 化学工业出版社, 1990, 10-13.
[6] SCHNIZER A W, WHEELER E N. Treating propiolactone with heated phosphoric acid to produce acrylic acid: US3176042[P]. 1965-03-30.
[7] 张俊峰. 乳酸高效催化转化制备丙烯酸研究[D]. 南京: 南京大学, 2011.
[8] 徐忠, 宁艳春, 严生虎, 等. 磷酸钠组合氧气预处理提高玉米秸秆酶解糖化效率[J]. 常州大学学报(自然科学版), 2021, 33(3): 65-74.
[9] BEERTHUIS R, ROTHENBERG G, SHIJU N R. Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables[J]. Green Chemistry, 2015, 17(3): 1341-1361.
[10] HAYASHI H, SUGIYAMA S, KATAYAMA Y, et al. An alloy phase of Pd3Pb and the activity of Pb/Pd/C catalysts in the liquid-phase oxidation of sodium lactate to pyruvate[J]. Journal of Molecular Catalysis, 1994, 91(1): 129-137.
[11] ENGIN A, HALUK H, GURKAN K. Production of lactic acid esters catalyzed by heteropoly acid supported over ion-exchange resins[J]. Green Chemistry, 2003, 5(4): 460.
[12] LI K T, WANG C K, WANG I, et al. Esterification of lactic acid over TiO2-ZrO2 catalysts[J]. Applied Catalysis A: General, 2011, 392(1/2): 180-183.
[13] WADLEY D C, TAM M S, KOKITKAR P B, et al. Lactic acid conversion to 2, 3-pentanedione and acrylic acid over silica-supported sodium nitrate:reaction optimization and identification of sodium lactate as the active catalyst[J]. Journal of Catalysis, 1997, 165(2): 162-171.
[14] GUNTER G C, LANGFORD R H, JACKSON J E, et al. Catalysts and supports for conversion of lactic acid to acrylic acid and 2, 3-pentanedione[J]. Industrial & Engineering Chemistry Research, 1995, 34(3): 974-980.
[15] TAKEDA Y, SHOJI T, WATANABE H, et al. Selective hydrogenation of lactic acid to 1, 2-propanediol over highly active ruthenium-molybdenum oxide catalysts[J]. ChemSusChem, 2015, 8(7): 1170-1178.
[16] ZHANG Z G, JACKSON J E, MILLER D J. Aqueous-phase hydrogenation of lactic acid to propylene glycol[J]. Applied Catalysis A: General, 2001, 219(1/2): 89-98.
[17] UPARE P P, YOON J W, HWANG D W, et al. Design of a heterogeneous catalytic process for the continuous and direct synthesis of lactide from lactic acid[J]. Green Chemistry, 2016, 18(22): 5978-5983.
[18] CHEN G X, KIM H S, KIM E S, et al. Synthesis of high-molecular-weight poly(L-lactic acid)through the direct condensation polymerization of L-lactic acid in bulk state[J]. European Polymer Journal, 2006, 42(2): 468-472.
[19] KATRYNIOK B, PAUL S, DUMEIGNIL F. Highly efficient catalyst for the decarbonylation of lactic acid to acetaldehyde[J]. Green Chemistry, 2010, 12(11): 1910.
[20] ZHAI Z J, LI X L, TANG C M, et al. Decarbonylation of lactic acid to acetaldehyde over aluminum sulfate catalyst[J]. Industrial & Engineering Chemistry Research, 2014, 53(25): 10318-10327.
[21] MÜLLER V, KUHNE K, SCHUBART R, et al. Method for producing high-purity dilactide: 2000043381[P]. 2000-07-27.
[22] 贺璇, 郭锡坤, 郑敦胜, 等. 合成丙交酯工艺的改进[J]. 精细化工, 2004, 21(10): 745-747.
[23] MOK W S L, ANTAL M J J, JONES M J. Formation of acrylic acid from lactic acid in supercritical water[J]. The Journal of Organic Chemistry, 1989, 54(19): 4596-4602.
[24] LIRA C T, MCCRACKIN P J. Conversion of lactic acid to acrylic acid in near-critical water[J]. Industrial & Engineering Chemistry Research, 1993, 32(11): 2608-2613.
[25] HOLMEN R E. Production of acrylates by catalytic dehydration of lactic acid and alkyl lactates: US2859240[P]. 1958-11-04.
[26] PENG J S, LI X L, TANG C M, et al. Barium sulphate catalyzed dehydration of lactic acid to acrylic acid[J]. Green Chemistry, 2014, 16(1): 108-111.
[27] TANG C M, PENG J S, FAN G C, et al. Catalytic dehydration of lactic acid to acrylic acid over dibarium pyrophosphate[J]. Catalysis Communications, 2014, 43: 231-234.
[28] TANG C M, PENG J S, LI X L, et al. Strontium pyrophosphate modified by phosphoric acid for the dehydration of lactic acid to acrylic acid[J]. RSC Advances, 2014, 4(55): 28875.
[29] GUO Z, THENG D S, TANG K Y, et al. Dehydration of lactic acid to acrylic acid over lanthanum phosphate catalysts: the role of Lewis acid sites[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(34): 23746-23754.
[30] KIBBY C L, HALL W K. Dehydrogenation of alcohols and hydrogen transfer from alcohols to ketones over hydroxyapatite catalysts[J]. Journal of Catalysis, 1973, 31(1): 65-73.
[31] TSUCHIDA T, JUN K B, YOSHIOKA T, et al. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst[J]. Journal of Catalysis, 2008, 259(2): 183-189.
[32] SILVESTER L, LAMONIER J F, FAYE J, et al. Reactivity of ethanol over hydroxyapatite-based Ca-enriched catalysts with various carbonate contents[J]. Catalysis Science & Technology, 2015, 5(5): 2994-3006.
[33] JORIS S J, AMBERG C H. Nature of deficiency in nonstoichiometric hydroxyapatites. I. catalytic activity of calcium and strontium hydroxyapatites[J]. The Journal of Physical Chemistry, 1971, 75(20): 3167-3171.
[34] GHANTANI V C, LOMATE S T, DONGARE M K, et al. Catalytic dehydration of lactic acid to acrylic acid using calcium hydroxyapatite catalysts[J]. Green Chemistry, 2013, 15(5): 1211.
[35] MATSUURA Y, ONDA A, YANAGISAWA K. Selective conversion of lactic acid into acrylic acid over hydroxyapatite catalysts[J]. Catalysis Communications, 2014, 48: 5-10.
[36] YAN B, TAO L Z, LIANG Y, et al. Sustainable production of acrylic acid: catalytic performance of hydroxyapatites for gas-phase dehydration of lactic acid[J]. ACS Catalysis, 2014, 4(6): 1931-1943.
[37] MATSUURA Y, ONDA A, OGO S, et al. Acrylic acid synthesis from lactic acid over hydroxyapatite catalysts with various cations and anions[J]. Catalysis Today, 2014, 226: 192-197.
[38] GHANTANI V C, DONGARE M K, UMBARKAR S B. Nonstoichiometric calcium pyrophosphate: a highly efficient and selective catalyst for dehydration of lactic acid to acrylic acid[J]. RSC Advances, 2014, 4(63): 33319-33326.
[39] SUN P, YU D H, FU K M, et al. Potassium modified NaY: a selective and durable catalyst for dehydration of lactic acid to acrylic acid[J]. Catalysis Communications, 2009, 10(9): 1345-1349.
[40] SUN P, YU D H, TANG Z C, et al. NaY zeolites catalyze dehydration of lactic acid to acrylic acid: studies on the effects of anions in potassium salts[J]. Industrial & Engineering Chemistry Research, 2010, 49(19): 9082-9087.
[41] ZHANG J F, ZHAO Y L, PAN M, et al. Efficient acrylic acid production through bio lactic acid dehydration over NaY zeolite modified by alkali phosphates[J]. ACS Catalysis, 2011, 1(1): 32-41.
[42] ZHANG J F, ZHAO Y L, FENG X Z, et al. Na2HPO4-modified NaY nanocrystallites: efficient catalyst for acrylic acid production through lactic acid dehydration[J]. Catalysis Science & Technology, 2014, 4(5): 1376-1385.
[43] ZHANG L L, THENG D S, DU Y H, et al. Selective conversion of lactic acid to acrylic acid over alkali and alkaline-earth metal co-modified NaY zeolites[J]. Catalysis Science & Technology, 2017, 7(24): 6101-6111.
[44] LARI G M, PUÉRTOLAS B, FREI M S, et al. Hierarchical NaY zeolites for lactic acid dehydration to acrylic acid[J]. ChemCatChem, 2016, 8(8): 1507-1514.
[45] YAN B, TAO L Z, LIANG Y, et al. Sustainable production of acrylic acid: alkali-ion exchanged beta zeolite for gas-phase dehydration of lactic acid[J]. ChemSusChem, 2014, 7(6): 1568-1578.
[46] YAN B, MAHMOOD A, LIANG Y, et al. Sustainable production of acrylic acid: Rb+- and Cs+-exchanged beta zeolite catalysts for catalytic gas-phase dehydration of lactic acid[J]. Catalysis Today, 2016, 269: 65-73.
[47] ZHANG X H, LIN L, ZHANG T, et al. Catalytic dehydration of lactic acid to acrylic acid over modified ZSM-5 catalysts[J]. Chemical Engineering Journal, 2016, 284: 934-941.
[48] YUAN C, LIU H Y, ZHANG Z K, et al. Alkali-metal-modified ZSM-5 zeolites for improvement of catalytic dehydration of lactic acid to acrylic acid[J]. Chinese Journal of Catalysis, 2015, 36(11): 1861-1866.
[49] YAN B, TAO L Z, MAHMOOD A, et al. Potassium-ion-exchanged zeolites for sustainable production of acrylic acid by gas-phase dehydration of lactic acid[J]. ACS Catalysis, 2017, 7(1): 538-550.
[50] GHAFFAR T, IRSHAD M, ANWAR Z, et al. Recent trends in lactic acid biotechnology: a brief review on production to purification[J]. Journal of Radiation Research and Applied Sciences, 2014, 7(2): 222-229.
[51] SU C Y, YU C C, CHIEN I L, et al. Control of highly interconnected reactive distillation processes: purification of raw lactic acid by esterification and hydrolysis[J]. Industrial & Engineering Chemistry Research, 2015, 54(27): 6932-6940.
[52] YANG X M, ZHANG Y L, ZHOU L P, et al. Production of lactic acid derivatives from sugars over post-synthesized Sn-beta zeolite promoted by WO3[J]. Food Chemistry, 2019, 289: 285-291.
[53] YANG X M, BIAN J J, HUANG J H, et al. Fluoride-free and low concentration template synthesis of hierarchical Sn-beta zeolites: efficient catalysts for conversion of glucose to alkyl lactate[J]. Green Chemistry, 2017, 19(3): 692-701.
[54] YAN Y, ZHANG Z H, BAK S M, et al. Confinement of ultrasmall cobalt oxide clusters within silicalite-1 crystals for efficient conversion of fructose into methyl lactate[J]. ACS Catalysis, 2019, 9(3): 1923-1930.
[55] ZHANG J, WANG L, WANG G X, et al. Hierarchical Sn-beta zeolite catalyst for the conversion of sugars to alkyl lactates[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3123-3131.
[56] LEE J M, HWANG D W, HWANG Y K, et al. Efficient dehydration of methyl lactate to acrylic acid using Ca3(PO4)2-SiO2 catalyst[J]. Catalysis Communications, 2010, 11(15): 1176-1180.
[57] WANG B, LI C, ZHU Q Q, et al. The effect of K2HPO4 and Al2(SO4)3 modified MCM-41 on the dehydration of methyl lactate to acrylic acid[J]. RSC Advances, 2014, 4(86): 45679-45686.
[58] HONG J H, LEE J M, KIM H, et al. Efficient and selective conversion of methyl lactate to acrylic acid using Ca3(PO4)2-Ca2(P2O7)composite catalysts[J]. Applied Catalysis A: General, 2011, 396(1/2): 194-200.
[59] ZHANG J F, LIN J P, XU X B, et al. Evaluation of catalysts and optimization of reaction conditions for the dehydration of methyl lactate to acrylates[J]. Chinese Journal of Chemical Engineering, 2008, 16(2): 263-269.
[60] ZHANG Z Q, QU Y X, WANG S, et al. Catalytic performance and characterization of silica supported sodium phosphates for the dehydration of methyl lactate to methyl acrylate and acrylic acid[J]. Industrial & Engineering Chemistry Research, 2009, 48(20): 9083-9089.
[61] SHI H F, HU Y C, WANG Y, et al. KNaY-zeolite catalyzed dehydration of methyl lactate[J]. Chinese Chemical Letters, 2007, 18(4): 476-478.
[62] BLANCO E, LORENTZ C, DELICHERE P, et al. Dehydration of ethyl lactate over alkaline earth phosphates: performances, effect of water on reaction pathways and active sites[J]. Applied Catalysis B: Environmental, 2016, 180: 596-606.
[63] MURPHY B M, LETTERIO M P, XU B J. Catalytic dehydration of methyl lactate: reaction mechanism and selectivity control[J]. Journal of Catalysis, 2016, 339: 21-30.
[64] MURPHY B M, LETTERIO M P, XU B J. Selectivity control in the catalytic dehydration of methyl lactate: the effect of pyridine[J]. ACS Catalysis, 2016, 6(8): 5117-5131.
[65] MURPHY B M, LETTERIO M P, XU B J. Catalyst deactivation in pyridine-assisted selective dehydration of methyl lactate on NaY[J]. ACS Catalysis, 2017, 7(3): 1912-1930.
[66] MURPHY B, MOU T, WANG B, et al. The effect of cofed species on the kinetics of catalytic methyl lactate dehydration on NaY[J]. ACS Catalysis, 2018, 8(10): 9066-9078.
[67] LIU Z H, YAN B, LIANG Y, et al. Comparative study of gas-phase “dehydration” of alkyl lactates and lactic acid for acrylic acid production over hydroxyapatite catalysts[J]. Molecular Catalysis, 2020, 494: 111098.
[68] GUNTER G C, CRACIUN R, TAM M S, et al. FTIR and 31P-NMR spectroscopic analyses of surface species in phosphate-catalyzed lactic acid conversion[J]. Journal of Catalysis, 1996, 164(1): 207-219.
[69] TAM M S, GUNTER G C, CRACIUN R, et al. Reaction and spectroscopic studies of sodium salt catalysts for lactic acid conversion[J]. Industrial & Engineering Chemistry Research, 1997, 36(9): 3505-3512.
[70] YAN B, LIU Z H, LIANG Y, et al. Acrylic acid production by gas-phase dehydration of lactic acid over K+-exchanged ZSM-5: reaction variable effects, kinetics, and new evidence for cooperative acid-base bifunctional catalysis[J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 17417-17428.
(责任编辑:谭晓荷)

备注/Memo

备注/Memo:
收稿日期: 2022-02-10。
基金项目: 国家自然科学基金资助项目(21878027); 江苏省高校自然科学基金重大资助项目(18KJA150001,19KJA430003); 江苏省先进催化与绿色制造协同创新中心资助项目(ACGM2020-08)。
作者简介: 刘宗辉(1989—), 男, 山东济南人, 博士, 讲师。E-mail: liuzh@cczu.edu.cn
更新日期/Last Update: 1900-01-01