参考文献/References:
[1] YAMAGUCHI Y, BRENNER M, HEARING V J. The regulation of skin pigmentation[J]. The Journal of Biological Chemistry, 2007, 282(38): 27557-27561.
[2] LIN J Y, FISHER D E. Melanocyte biology and skin pigmentation[J]. Nature, 2007, 445(7130): 843-850.
[3] ANDO H, NIKI Y, ITO M, et al. Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion[J]. The Journal of Investigative Dermatology, 2012, 132(4): 1222-1229.
[4] SEIBERG M, BABIARZ L, LIN C B. IL-41 the PAR-2 pathway is differentially expressed in skin of color[J]. Pigment Cell Research, 2003, 16(5): 591.
[5] NIU C, AISA H A. Upregulation of melanogenesis and tyrosinase activity: potential agents for vitiligo[J]. Molecules, 2017, 22(8): 1303.
[6] D'MELLO S, GRAEME F, BRUCE B, et al. Signaling pathways in melanogenesis[J]. International Journal of Molecular Sciences, 2016, 17(7): 1144.
[7] DEL MARMOL V, BEERMANN F. Tyrosinase and related proteins in mammalian pigmentation[J]. PLoS One, 1996, 381(3): 165-168.
[8] WIDLUND H R, FISHER D E. Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival[J]. Oncogene, 2003, 22(20): 3035-3041.
[9] VACHTENHEIM J, BOROVANSKY J. “Transcription physiology” of pigment formation in melanocytes: central role of MITF[J]. American Journal of Translational Research, 2010, 19(7): 617-627.
[10] FU T, CHAI B, SHI Y, et al. Fargesin inhibits melanin synthesis in murine malignant and immortalized melanocytes by regulating PKA/CREB and P38/MAPK signaling pathways[J]. Journal of Dermatological Science, 2019, 94(1): 213-219.
[11] LEE S E, PARK S H, OH S W, et al. Beauvericin inhibits melanogenesis by regulating cAMP/PKA/CREB and LXR-α/p38 MAPK-mediated pathways[J]. Scientific Reports, 2018, 8(1): 14958.
[12] 杨立, 沈凤嘉. 甘草素与异甘草素的合成[J]. 药学学报, 1994, 29(11): 877-880.
[13] YAMASHITA T, ASANO Y, TANIGUCHI T, et al. Glycyrrhizin ameliorates fibrosis, vasculopathy, and inflammation in animal models of systemic sclerosis[J]. The Journal of Investigative Dermatology, 2017, 137(3): 631-640.
[14] UTO T, OHTA T, YAMASHITA A, et al. Liquiritin and liquiritigenin induce melanogenesis via enhancement of p38 and PKA signaling pathways[J]. Medicines(Basel), 2019, 6(2): 68.
[15] LYU J P, FU Y, GAO R, et al. Diazepam enhances melanogenesis, melanocyte dendricity and melanosome transport via the PBR/cAMP/PKA pathway[J]. International Journal of Biochemistry and Cell Biology, 2019, 116: 105620.
[16] LYU J P, AN X, JIANG S, et al. Protoporphyrin IX stimulates melanogenesis, melanocyte dendricity, and melanosome transport through the cGMP/PKG pathway[J]. Frontiers in Pharmacology, 2020, 11: 569368.
[17] LYU J P, FU Y, CAO Y, et al. Isoliquiritigenin inhibits melanogenesis, melanocyte dendricity and melanosome transport by regulating ERK-mediated MITF degradation[J]. Experimental Dermatology, 2020, 29(2): 149-157.
[18] LYU J P, JIANG S, YANG Y, et al. FGIN-1-27 inhibits melanogenesis by regulating protein kinase A/cAMP-responsive element-binding, protein kinase C-β, and mitogen-activated protein kinase pathways[J]. Frontiers in Pharmacology, 2020, 11: 602889.
[19] LEE C S, PARK M, HAN J, et al. Liver X receptor activation inhibits melanogenesis through the acceleration of ERK-mediated MITF degradation[J]. Journal of Investigative Dermatology, 2013,133(4):1063-1071.
[20] JIN H K, BAEK S H, DONG H K, et al. Downregulation of melanin synthesis by haginin a and its application to in vivo lightening model[J]. Journal of Investigative Dermatology, 2008, 128(5): 1227-1235.
(责任编辑:殷丽莉)