[1]吕金鹏,姜松周,李思淇,等.甘草素对B16F10细胞中黑色素合成作用研究[J].常州大学学报(自然科学版),2022,34(04):68-74.[doi:10.3969/j.issn.2095-0411.2022.04.09]
 LYU Jinpeng,JIANG Songzhou,LI Siqi,et al.Study on the Effect of Liquiritigenin on Melanogenesis in B16F10 Cells[J].Journal of Changzhou University(Natural Science Edition),2022,34(04):68-74.[doi:10.3969/j.issn.2095-0411.2022.04.09]
点击复制

甘草素对B16F10细胞中黑色素合成作用研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第34卷
期数:
2022年04期
页码:
68-74
栏目:
生物医药工程
出版日期:
2022-07-28

文章信息/Info

Title:
Study on the Effect of Liquiritigenin on Melanogenesis in B16F10 Cells
文章编号:
2095-0411(2022)04-0068-07
作者:
吕金鹏姜松周李思淇张锡梅杨莹宋国强
(常州大学药学院,江苏常州213164)
Author(s):
LYU Jinpeng JIANG Songzhou LI Siqi ZHANG Ximei YANG Ying SONG Guoqiang
(School of Pharmacy, Changzhou University, Changzhou 213164, China)
关键词:
甘草素 黑色素合成 酪氨酸酶 作用机制
Keywords:
liquiritigenin melanogenesis TYR mechanism
分类号:
R 961
DOI:
10.3969/j.issn.2095-0411.2022.04.09
文献标志码:
A
摘要:
研究甘草素对小鼠黑色素瘤(B16F10)细胞中黑色素合成的影响及其机制。取0,10,20,40,60,80 μmol/L异甘草素作用B16F10细胞48 h,MTT法检测甘草素对细胞增殖率的影响。根据增殖活性,筛选出浓度分别为0(对照组),10,20,40 μmol/L的甘草素处理B16F10细胞48 h,采用氢氧化钠裂解法、Masson-Fontana氨银染色法、Western印迹方法研究甘草素对B16F10细胞黑色素合成的作用及相关机制。与对照组相比: 20,40 μmol/L可以显著促进黑色素合成,促进黑色素合成相关蛋白TYR,TRP-1,MITF的表达; 40 μmol/L甘草素可以激活B16F10细胞中的p38通路。p38通路抑制剂SB203580可以阻断甘草素的促黑色素合成作用。研究结果表明:甘草素通过激活p38信号通路,促进黑色素合成相关蛋白TYR,TRP-1,MITF的表达,进而促进黑色素合成。
Abstract:
To evaluate the effect of liquiritigenin on melanogenesis in mouse melanoma(B16F10)cells, and to explore its molecular mechanism. B16F10 cells were treated with different concentrations isoliquiritin(0, 10, 20, 40, 60, 80 μmol/L)for 48 hours, and methyl thiazolyl tetrazolium(MTT)assay was performed to evaluate changes in cellular proliferative activity. According to the cellular proliferation activity, 4 concentrations(0, 10, 20, 40 μmol/L)were screened out. Melanin content assay and Masson-Fontana ammoniacal silver staining were conducted to determine the melanin content in B16F10 cells. Western blot analysis was conducted to determine the protein expression of melanog-enesis related proteins TYR, TRP-1 and MITF, and MAPK signaling pathways. Compared with the control group, 20, 40 μmol/L liquiritigenin significantly promote melanogenesis and the expression of TYR, TRP-1, and MITF. Compared with the control group, 40 μmol/L liquiritigenin activate the p38 pathway in B16F10 cells. To further verify whether liquiritigenin promotes melanogenesis by activating the p38 pathway, B16F10 cells were pretreated with SB203580(the inhibitor of p38)for 1 h before liquiritigenin was applied for 48 h. SB203580 significantly reversed liquiritigenin-induced melanogenesis in B16F10 cells. Liquiritigenin significantly promotes melanogenesis. These functions can be ascribed to the activation of the p38 signaling pathway. Once this pathway was activated, it would increase the expression of TYR, TRP-1 and MITF, finally increasing the pigmentation.

参考文献/References:

[1] YAMAGUCHI Y, BRENNER M, HEARING V J. The regulation of skin pigmentation[J]. The Journal of Biological Chemistry, 2007, 282(38): 27557-27561.
[2] LIN J Y, FISHER D E. Melanocyte biology and skin pigmentation[J]. Nature, 2007, 445(7130): 843-850.
[3] ANDO H, NIKI Y, ITO M, et al. Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion[J]. The Journal of Investigative Dermatology, 2012, 132(4): 1222-1229.
[4] SEIBERG M, BABIARZ L, LIN C B. IL-41 the PAR-2 pathway is differentially expressed in skin of color[J]. Pigment Cell Research, 2003, 16(5): 591.
[5] NIU C, AISA H A. Upregulation of melanogenesis and tyrosinase activity: potential agents for vitiligo[J]. Molecules, 2017, 22(8): 1303.
[6] D'MELLO S, GRAEME F, BRUCE B, et al. Signaling pathways in melanogenesis[J]. International Journal of Molecular Sciences, 2016, 17(7): 1144.
[7] DEL MARMOL V, BEERMANN F. Tyrosinase and related proteins in mammalian pigmentation[J]. PLoS One, 1996, 381(3): 165-168.
[8] WIDLUND H R, FISHER D E. Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival[J]. Oncogene, 2003, 22(20): 3035-3041.
[9] VACHTENHEIM J, BOROVANSKY J. “Transcription physiology” of pigment formation in melanocytes: central role of MITF[J]. American Journal of Translational Research, 2010, 19(7): 617-627.
[10] FU T, CHAI B, SHI Y, et al. Fargesin inhibits melanin synthesis in murine malignant and immortalized melanocytes by regulating PKA/CREB and P38/MAPK signaling pathways[J]. Journal of Dermatological Science, 2019, 94(1): 213-219.
[11] LEE S E, PARK S H, OH S W, et al. Beauvericin inhibits melanogenesis by regulating cAMP/PKA/CREB and LXR-α/p38 MAPK-mediated pathways[J]. Scientific Reports, 2018, 8(1): 14958.
[12] 杨立, 沈凤嘉. 甘草素与异甘草素的合成[J]. 药学学报, 1994, 29(11): 877-880.
[13] YAMASHITA T, ASANO Y, TANIGUCHI T, et al. Glycyrrhizin ameliorates fibrosis, vasculopathy, and inflammation in animal models of systemic sclerosis[J]. The Journal of Investigative Dermatology, 2017, 137(3): 631-640.
[14] UTO T, OHTA T, YAMASHITA A, et al. Liquiritin and liquiritigenin induce melanogenesis via enhancement of p38 and PKA signaling pathways[J]. Medicines(Basel), 2019, 6(2): 68.
[15] LYU J P, FU Y, GAO R, et al. Diazepam enhances melanogenesis, melanocyte dendricity and melanosome transport via the PBR/cAMP/PKA pathway[J]. International Journal of Biochemistry and Cell Biology, 2019, 116: 105620.
[16] LYU J P, AN X, JIANG S, et al. Protoporphyrin IX stimulates melanogenesis, melanocyte dendricity, and melanosome transport through the cGMP/PKG pathway[J]. Frontiers in Pharmacology, 2020, 11: 569368.
[17] LYU J P, FU Y, CAO Y, et al. Isoliquiritigenin inhibits melanogenesis, melanocyte dendricity and melanosome transport by regulating ERK-mediated MITF degradation[J]. Experimental Dermatology, 2020, 29(2): 149-157.
[18] LYU J P, JIANG S, YANG Y, et al. FGIN-1-27 inhibits melanogenesis by regulating protein kinase A/cAMP-responsive element-binding, protein kinase C-β, and mitogen-activated protein kinase pathways[J]. Frontiers in Pharmacology, 2020, 11: 602889.
[19] LEE C S, PARK M, HAN J, et al. Liver X receptor activation inhibits melanogenesis through the acceleration of ERK-mediated MITF degradation[J]. Journal of Investigative Dermatology, 2013,133(4):1063-1071.
[20] JIN H K, BAEK S H, DONG H K, et al. Downregulation of melanin synthesis by haginin a and its application to in vivo lightening model[J]. Journal of Investigative Dermatology, 2008, 128(5): 1227-1235.
(责任编辑:殷丽莉)

相似文献/References:

[1]杨莹,贾冰怡,张锡梅,等.LED蓝光光疗对黑色素合成的作用及机制[J].常州大学学报(自然科学版),2022,34(01):86.[doi:10.3969/j.issn.2095-0411.2022.01.010]
 YANG Ying,JIA Bingyi,ZHANG Ximei,et al.Effect and Mechanism of LED Blue Light Phototherapy on Melanin Synthesis of B16F10[J].Journal of Changzhou University(Natural Science Edition),2022,34(04):86.[doi:10.3969/j.issn.2095-0411.2022.01.010]

备注/Memo

备注/Memo:
收稿日期: 2022-01-12。
基金项目: 国家自然科学基金资助项目(82103752); 江苏省高等学校自然科学研究项目资助(20KJB310024); 常州市重点研发计划(CJ20210125); 2021年大学生创新创业训练计划项目(2021-B-07)。
作者简介: 吕金鹏(1988—), 男, 山东滨州人, 博士, 讲师。通信联系人: 宋国强(1969—), E-mail: sgq@cczu.edu.cn
更新日期/Last Update: 1900-01-01