[1]温哲,曹菲,刘宗辉,等.杂多酸催化微晶纤维素水解制备葡萄糖[J].常州大学学报(自然科学版),2022,34(05):30-38.[doi:10.3969/j.issn.2095-0411.2022.05.005]
 WEN Zhe,CAO Fei,LIU Zonghui,et al.Hydrolysis of Microcrystalline Cellulose into Glucose over Heteropolyacid Catalysts[J].Journal of Changzhou University(Natural Science Edition),2022,34(05):30-38.[doi:10.3969/j.issn.2095-0411.2022.05.005]
点击复制

杂多酸催化微晶纤维素水解制备葡萄糖()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第34卷
期数:
2022年05期
页码:
30-38
栏目:
化学化工
出版日期:
2022-09-28

文章信息/Info

Title:
Hydrolysis of Microcrystalline Cellulose into Glucose over Heteropolyacid Catalysts
文章编号:
2095-0411(2022)05-0030-09
作者:
温哲曹菲刘宗辉薛冰
(常州大学石油化工学院,江苏常州213164)
Author(s):
WEN Zhe CAO Fei LIU Zonghui XUE Bing
(School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China)
关键词:
微晶纤维素 水解 杂多酸 葡萄糖 磷钨酸
Keywords:
microcrystalline cellulose hydrolysis heteropolyacid catalysts glucose H3PW12O40
分类号:
TQ 352.67
DOI:
10.3969/j.issn.2095-0411.2022.05.005
文献标志码:
A
摘要:
以磷钨酸、磷钼酸和硅钨酸3种典型Keggin型杂多酸为催化剂,考察其对微晶纤维素在水热条件下水解制备葡萄糖反应的催化性能。杂多酸催化作用下,微晶纤维素水解主要生成葡萄糖、果糖、5-羟甲基糠醛、乙酰丙酸和甲酸等产物。以葡萄糖收率和选择性为评价标准,杂多酸催化性能从大到小为磷钨酸,硅钨酸,磷钼酸,与其酸强度顺序一致。磷钨酸催化体系中,适中的反应温度、较短的反应时间及较多的催化剂用量有利于葡萄糖的生成。磷钨酸催化纤维素水解的最佳反应条件为:磷钨酸用量0.7 mmol,反应温度170 ℃,反应时间4 h。葡萄糖收率最大为34.7%,选择性为57.5%。采用乙醚萃取法从液相产物中回收磷钨酸循环使用,其催化性能基本保持稳定。
Abstract:
The hydrolysis of cellulose into glucose over heteropolyacid catalysts with Keggin structure including H3PW12O40, H3PMo12O40 and H4SiW12O40 were investigated under hydrothermal conditions. Microcrystalline cellulose was mainly converted into glucose, fructose, 5-hydroxymethylfurfural, levulinic acid and formic acid. The catalytic performance of three heteropolyacid catalysts in terms of glucose yield and selectivity were in order of H3PW12O40, H4SiW12O40, H3PMo12O40, which was consistent with the order of acid strength in three heteropolyacid catalysts. Stronger acidity, moderate reaction temperature and shorter reaction time are favorable for the hydrolysis of cellulose into glucose. The optimal reaction conditions over H3PW12O40should be H3PW12O40dosage of 0.7 mmol at 170 ℃ for 4 h.The maximum glucose yield reached 34.7% with selectivity of 57.5%. The H3PW12O40 catalyst could be readily separated from the hydrolysate by extraction with diethyl ether for reuse and remained good catalytic activity during recycle tests.

参考文献/References:

[1] YAMAGUCHI A, MIMURA N, SHIRAI M, et al. Cascade utilization of biomass: strategy for conversion of cellulose, hemicellulose, and lignin into useful chemicals[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10445-10451.
[2] LUO X L, LI Y D, GUPTA N K, et al. Protection strategies enable selective conversion of biomass[J]. Angewandte Chemie(International Ed in English), 2020, 59(29): 11704-11716.
[3] 徐忠, 宁艳春, 严生虎, 等.磷酸钠组合氧气预处理提高玉米秸秆酶解糖化效率[J].常州大学学报(自然科学版),2021, 33(3): 65-74.
[4] HAN X W, GUO Y, LIU X H, et al. Catalytic conversion of lignocellulosic biomass into hydrocarbons: a mini review[J]. Catalysis Today, 2019, 319: 2-13.
[5] WANG C G, ZHANG X H, LIU Q, et al. A review of conversion of lignocellulose biomass to liquid transport fuels by integrated refining strategies[J]. Fuel Processing Technology, 2020, 208: 106485.
[6] MA J P, SHI S, JIA X Q, et al. Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels[J]. Journal of Energy Chemistry, 2019, 36: 74-86.
[7] 卿青, 郭琪, 周琳琳, 等.SnCl4催化玉米芯高效制备乙酰丙酸的工艺研究[J]. 常州大学学报(自然科学版), 2018, 30(2): 14-22.
[8] MASCAL M, NIKITIN E. Direct, high-yield conversion of cellulose into biofuel[J]. Angewandte Chemie International Edition, 2008, 47(41): 7924-7926.
[9] BESSON M, GALLEZOT P, PINEL C. Conversion of biomass into chemicals over metal catalysts[J]. Chemical Reviews, 2014, 114(3): 1827-1870.
[10] DENG W P, ZHANG H X, XUE L Q, et al. Selective activation of the C—O bonds in lignocellulosic biomass for the efficient production of chemicals[J]. Chinese Journal of Catalysis, 2015, 36(9): 1440-1460.
[11] RINALDI R, SCHÜTH F. Acid hydrolysis of cellulose as the entry point into biorefinery schemes[J]. ChemSusChem, 2009, 2(12): 1096-1107.
[12] SHROTRI A, TANKSALE A, BELTRAMINI J N, et al. Conversion of cellulose to polyols over promoted nickel catalysts[J]. Catalysis Science & Technology, 2012, 2(9): 1852-1858.
[13] HUANG H, DENARD C A, ALAMILLO R, et al. Tandem catalytic conversion of glucose to 5-hydroxymethylfurfural with an immobilized enzyme and a solid acid[J]. ACS Catalysis, 2014, 4(7): 2165-2168.
[14] HUANG Y B, FU Y. Hydrolysis of cellulose to glucose by solid acid catalysts[J]. Green Chemistry, 2013, 15(5): 1095-1111.
[15] VILCOCQ L, CASTILHO P C, CARVALHEIRO F, et al. Hydrolysis of oligosaccharides over solid acid catalysts: a review[J]. ChemSusChem, 2014, 7(4): 1010-1019.
[16] ZHAO S, CHENG M X, LI J Z, et al. One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Brønsted-Lewis-surfactant-combined heteropolyacid catalyst[J]. Chemical Communications, 2011, 47(7): 2176-2178.
[17] GUO F, FANG Z, XU C C, et al. Solid acid mediated hydrolysis of biomass for producing biofuels[J]. Progress in Energy and Combustion Science, 2012, 38(5): 672-690.
[18] SHIMIZU K I, FURUKAWA H, KOBAYASHI N, et al. Effects of brønsted and lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose[J]. Green Chemistry, 2009, 11(10): 1627-1632.
[19] TIAN J, WANG J H, ZHAO S, et al. Hydrolysis of cellulose by the heteropoly acid H3PW12O40[J]. Cellulose, 2010, 17(3): 587-594.
[20] DENG W P, LIU M, ZHANG Q H, et al. Direct transformation of cellulose into methyl and ethyl glucosides in methanol and ethanol media catalyzed by heteropolyacids[J]. Catalysis Today, 2011, 164(1): 461-466.
[21] GEBOERS J, VAN DE VYVER S, CARPENTIER K, et al. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon[J]. Chemical Communications, 2010, 46(20): 3577-3579.
[22] GEBOERS J, VAN DE VYVER S, CARPENTIER K, et al. Hydrolytic hydrogenation of cellulose with hydrotreated caesium salts of heteropoly acids and Ru/C[J]. Green Chemistry, 2011, 13(8): 2167-2174.
[23] PALKOVITS R, TAJVIDI K, RUPPERT A M, et al. Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols[J]. Chemical Communications, 2011, 47(1): 576-578.
[24] OP DE BEECK B, GEBOERS J, VAN DE VYVER S, et al. Conversion of(ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon[J]. ChemSusChem, 2013, 6(1): 199-208.
[25] ZHANG K, WU S B, YANG H, et al. Catalytic conversion of cellulose for efficient ethylene glycol production and insights into the reaction pathways[J]. RSC Advances, 2016, 6(81): 77499-77506.
[26] CHENG M X, SHI T, GUAN H Y, et al. Clean production of glucose from polysaccharides using a micellar heteropolyacid as a heterogeneous catalyst[J]. Applied Catalysis B: Environmental, 2011, 107(1/2): 104-109.
[27] HU L, LIN L, WU Z, et al. Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts[J]. Applied Catalysis B: Environmental, 2015, 174/175: 225-243.
[28] DENG W P, ZHANG Q H, WANG Y. Polyoxometalates as efficient catalysts for transformations of cellulose into platform chemicals[J]. Dalton Transactions, 2012, 41(33): 9817-9831.
[29] NANDIWALE K Y, GALANDE N D, THAKUR P, et al. One-pot synthesis of 5-hydroxymethylfurfural by cellulose hydrolysis over highly active bimodal micro/mesoporous H-ZSM-5 catalyst[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(7): 1928-1932.
[30] TIAN J, FANG C, CHENG M, et al. Hydrolysis of cellulose over CsxH3-xPW12O40(x=1-3)heteropoly acid catalysts[J]. Chemical Engineering & Technology, 2011, 34(3): 482-486.
(责任编辑:谭晓荷)

相似文献/References:

[1]方永勤,席化远.对氟苯甲酰氯的合成[J].常州大学学报(自然科学版),2012,(01):18.
 FANG Yong-qin,XI Hua-yuan.Synthesis of p-Fluorobenzoyl Chloride[J].Journal of Changzhou University(Natural Science Edition),2012,(05):18.

备注/Memo

备注/Memo:
收稿日期: 2022-02-05。
基金项目: 国家自然科学基金资助项目(21878027); 江苏省高校自然科学基金重大资助项目(18KJA150001,19KJA430003); 江苏省先进催化与绿色制造协同创新中心资助项目(ACGM2020-08)。
作者简介: 温哲(1989—), 女, 河北邢台人, 博士, 讲师。E-mail: wenzhe@cczu.edu.cn
更新日期/Last Update: 1900-01-01