[1]王俊,庞明军.剪切稀化流体中气泡界面污染对传热的影响[J].常州大学学报(自然科学版),2022,34(06):41-53.[doi:10.3969/j.issn.2095-0411.2022.06.006]
 WANG Jun,PANG Mingjun.Effect of Bubble Interface Contamination on Heat Transfer in Shear-Thinning Fluid[J].Journal of Changzhou University(Natural Science Edition),2022,34(06):41-53.[doi:10.3969/j.issn.2095-0411.2022.06.006]
点击复制

剪切稀化流体中气泡界面污染对传热的影响()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第34卷
期数:
2022年06期
页码:
41-53
栏目:
机械制造及其自动化
出版日期:
2022-11-28

文章信息/Info

Title:
Effect of Bubble Interface Contamination on Heat Transfer in Shear-Thinning Fluid
文章编号:
2095-0411(2022)06-0041-13
作者:
王俊庞明军
(常州大学机械与轨道交通学院,江苏常州213164)
Author(s):
WANG Jun PANG Mingjun
(School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China)
关键词:
剪切稀化流体 界面污染 传热 停滞帽模型 泡状流
Keywords:
shear-thinning fluid interfacial pollution heat transfer stagnation cap model bubbly flow
分类号:
TK 124
DOI:
10.3969/j.issn.2095-0411.2022.06.006
文献标志码:
A
摘要:
采用停滞帽模型,对剪切稀化流体中表面受污染气泡的传热特性进行了详细研究。结果表明流变指数对气泡传热效率的影响相对较小,而雷诺数和气泡界面污染程度对气泡传热效率影响较大; 随着雷诺数的增大和(或)停滞帽角度的减小,气泡周围热边界层逐渐变薄,传热效果变好; 且界面受污染气泡表面的平均努塞尔数随着停滞帽角度的减小和(或)雷诺数的增大而增大。
Abstract:
The stagnation cap model is used to study the heat transfer characteristics of contaminated bubbles in shear-thinning fluids. The results show that the effect of rheological index on the bubble heat transfer is relatively small but the Reynolds number and the contamination degree of bubble interface has the great influence on it; with the increase of Reynolds number and/or the decrease of stagnation cap angle, the thermal boundary layer around the bubble becomes thinner and the heat transfer becomes good; and the average Nusselt number increases with the decrease of stagnation cap angle and the increase of the Reynolds number.

参考文献/References:

[1] LARIMI M M, RAMIAR A. Two-dimensional bubble rising through quiescent and non-quiescent fluid: influence on heat transfer and flow behavior[J]. International Journal of Thermal Sciences, 2018, 131: 58-71.
[2] BHUVANKAR P, DABIRI S. Impact of a single bubble rising near a wall on the wall-to-liquid heat flux[J]. International Journal of Heat and Mass Transfer, 2018, 116: 445-457.
[3] CAO B X, FAN J G, SUN X L, et al. Numerical simulation of mass-transfer characteristics of a bubble rising in yield stress fluids[J]. ACS Omega, 2020, 5(23): 13878-13885.
[4] PANDA A, WEITKAMP Y E J, RAJKOTWALA A H, et al. Influence of gas fraction on wall-to-liquid heat transfer in dense bubbly flows[J]. Chemical Engineering Science: X, 2019, 4: 100037.
[5] FERSHTMAN A, SHEMER L, BARNEA D. Local instantaneous heat transfer around a single elongated bubble in inclined pipes[J]. International Journal of Heat and Mass Transfer, 2019, 136: 510-520.
[6] KIM J, LEE J S. Effects of surface tension and inclined surface wettability on sliding bubble heat transfer[J]. International Journal of Thermal Sciences, 2019, 142: 77-88.
[7] GVOZDIC' B, DUNG O Y, ALM?RAS E, et al. Experimental investigation of heat transport in inhomogeneous bubbly flow[J]. Chemical Engineering Science, 2019, 198: 260-267.
[8] BABIN V, SHEMER L, BARNEA D. Local instantaneous heat transfer around a rising single Taylor bubble[J]. International Journal of Heat and Mass Transfer, 2015, 89: 884-893.
[9] GU J P, WU Y X, TANG G L, et al. Experimental study of heat transfer and bubble behaviors of NaCl solutions during nucleate flow boiling[J]. Experimental Thermal and Fluid Science, 2019, 109: 109907.
[10] LOBANOV P, PAKHOMOV M, TEREKHOV V. Experimental and numerical study of the flow and heat transfer in a bubbly turbulent flow in a pipe with sudden expansion[J]. Energies, 2019, 12(14): 2735.
[11] HESSENKEMPER H, ZIEGENHEIN T, LUCAS D. Contamination effects on the lift force of ellipsoidal air bubbles rising in saline water solutions[J]. Chemical Engineering Journal, 2020, 386: 121589.
[12] OGASAWARA T, TAKAHIRA H. The effect of contamination on the bubble cluster formation in swarm of spherical bubbles rising along an inclined flat wall[J]. Nuclear Engineering and Design, 2018, 337: 141-147.
[13] SUN T, PANG M J, FEI Y. Numerical study on hydrodynamic characteristics of spherical bubble contaminated by surfactants under higher Reynolds numbers[J]. Chinese Journal of Chemical Engineering, 2022, 45: 268-283.
[14] LEE W, LEE J Y. Experiment and modeling of lift force acting on single high Reynolds number bubbles rising in linear shear flow[J]. Experimental Thermal and Fluid Science, 2020, 115: 110085.
[15] TAKAGI S, MATSUMOTO Y. Surfactant effects on bubble motion and bubbly flows[J]. Annual Review of Fluid Mechanics, 2011, 43: 615-636.
[16] HAYASHI K, TOMIYAMA A. Effects of surfactant on terminal velocity of a Taylor bubble in a vertical pipe[J]. International Journal of Multiphase Flow, 2012, 39: 78-87.
[17] WEINER A, TIMMERMANN J, PESCI C, et al. Experimental and numerical investigation of reactive species transport around a small rising bubble[J]. Chemical Engineering Science: X, 2019, 1: 100007.
[18] TZOUNAKOS A, KARAMANEV D G, MARGARITIS A, et al. Effect of the surfactant concentration on the rise of gas bubbles in power-law non-Newtonian liquids[J]. Industrial & Engineering Chemistry Research, 2004, 43(18): 5790-5795.
[19] LI S B, FAN J G, LI R D, et al. Effect of surfactants on hydrodynamics characteristics of bubble in shear thinning fluids at low Reynolds number[J]. Journal of Central South University, 2018, 25(4): 805-811.
[20] KISHORE N, NALAJALA V S. Heat transfer from confined contaminated bubbles to power-law liquids at low to moderate Reynolds and Prandtl numbers[J]. Heat Transfer-Asian Research, 2017, 46(7): 681-702.
[21] NALAJALA V S, KISHORE N. Effects of contamination and power-law fluid viscosity on heat transfer phenomena of spherical bubbles[J]. Chemical Engineering & Technology, 2014, 37(10): 1757-1764.
[22] 庞明军, 费洋, 陈小洪, 等. 雷诺数和界面污染程度对气泡水动力学特性的影响[J]. 农业工程学报, 2019, 35(4): 99-105.
[23] TAKEMURA F, YABE A. Rising speed and dissolution rate of a carbon dioxide bubble in slightly contaminated water[J]. Journal of Fluid Mechanics, 1999, 378: 319-334.
[24] SABONI A, ALEXANDROVA S, KARSHEVA M, et al. Mass transfer from a contaminated fluid sphere[J]. AIChE Journal, 2011, 57(7): 1684-1692.
(责任编辑:李艳,周安迪)

备注/Memo

备注/Memo:
收稿日期: 2022-03-12。
基金项目: 国家自然科学基金资助项目(51376026); 2021年度常州大学创新创业基金资助项目(2021-A-06)。
作者简介: 王俊(1998—), 男, 江苏江阴人, 硕士生。 通信联系人: 庞明军(1976—), E-mail: pangmj@cczu. edu.cn
更新日期/Last Update: 1900-01-01