[1]陈蓓.已封装风速计系统的系统级模型研究[J].常州大学学报(自然科学版),2022,34(06):75-83.[doi:10.3969/j.issn.2095-0411.2022.06.009]
 CHEN Bei.A System-Level Model of the Packaged Wind Sensor System[J].Journal of Changzhou University(Natural Science Edition),2022,34(06):75-83.[doi:10.3969/j.issn.2095-0411.2022.06.009]
点击复制

已封装风速计系统的系统级模型研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第34卷
期数:
2022年06期
页码:
75-83
栏目:
计算机与信息工程
出版日期:
2022-11-28

文章信息/Info

Title:
A System-Level Model of the Packaged Wind Sensor System
文章编号:
2095-0411(2022)06-0075-09
作者:
陈蓓
(常州大学微电子与控制工程学院,江苏常州213164)
Author(s):
CHEN Bei
(School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China)
关键词:
系统级模型 热电模型 热风速传感器
Keywords:
system-level model thermal-electrical model thermal wind sensor
分类号:
TN 4
DOI:
10.3969/j.issn.2095-0411.2022.06.009
文献标志码:
A
摘要:
设计了一个风速计系统的系统级模型,该风速计系统由传感器芯片和控制电路构成。风速传感器包括1个中心温度传感器、4个加热条和4个测温传感器。文章提出的模型基于集总参数理论,将热流比拟为电流,电压比拟为温度,热传导过程中的热阻比拟为电路的电阻。利用这一系统级模型构建的系统级电路,可以同时进行传感器芯片的热学分析与控制电路的电学分析。测试在风洞中进行,实验结果与系统级模型具有良好的一致性,这一研究成果为风速计的实际应用提供了有价值的参考。
Abstract:
A system-level model of the wind sensor system including the sensor chip and the conditioning circuit was proposed in this paper. The wind sensor was composed of a center temperature sensor, four heaters and four temperature sensors. The presented model was based on the theory of lumped parameters. An analogy was drawn between the heat flow and the electric current. Herein, the voltage is an analogy for the temperature, and the thermal resistance is the resistance in the thermal transfer like the resistance in the circuit. Further, the thermal analysis of the sensor chip and the electrical analysis of the conditioning circuit were developed in one system-level circuit by using the model. The test was performed in the wind tunnel. Experiment results presented here showed an agreement with the system-level model. The results presented here provided a valuable reference for the practical application of the wind sensor.

参考文献/References:

[1] ZHU Y Q, CHEN B, QIN M, et al. 2-D micromachined thermal wind sensors-a review[J]. IEEE Internet of Things Journal, 2014, 1(3): 216-232.
[2] BRUSCHI P, DILIGENTI A, NAVARRINI D, et al. A double heater integrated gas flow sensor with thermal feedback[J]. Sensors and Actuators A: Physical, 2005, 123/124: 210-215.
[3] LIU C, HUANG J B. A micromachined flow shear-stress sensor based on thermal transfer principles[J]. Journal of Microelectromechanical Systems: A Joint IEEE and ASME Publication on Microstructures, Microactuators, Microsensors, and Microsystems, 1999, 8(1): 90-99.
[4] YE Y Z, YI Z X, GAO S X, et al. Effect of insulation trenches on micromachined silicon thermal wind sensors[J]. IEEE Sensors Journal, 2017, 17(24): 8324-8331.
[5] YE Y Z, YI Z X, GAO S X, et al. DRIE trenches and full-bridges for improving sensitivity of 2-D micromachined silicon thermal wind sensor[J]. Journal of Microelectromechanical Systems, 2017, 26(5): 1073-1081.
[6] CUBUKCU A S, ZERNICKEL E, BUERKLIN U, et al. A 2D thermal flow sensor with sub-mW power consumption[J]. Sensors and Actuators A: Physical, 2010, 163(2): 449-456.
[7] ZHU Y Q, CHEN B, GAO D, et al. A robust and low-power 2-D thermal wind sensor based on a glass-in-silicon reflow process[J]. Microsystem Technologies, 2016, 22(1): 151-162.
[8] HOURDAKIS E, SARAFIS P, NASSIOPOULOU A G. Novel air flow meter for an automobile engine using a Si sensor with porous Si thermal isolation[J]. Sensors(Basel, Switzerland), 2012, 12(11): 14838-14850.
[9] BREVET W, SEBASTIANO F, MAKINWA K. A 25 mW smart CMOS wind sensor with corner heaters[C]//IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society. Yokohama: IEEE, 2015: 1194-1199.
[10] SABATÉ N, SANTANDER J, FONSECA L, et al. Multi-range silicon micromachined flow sensor[J]. Sensors and Actuators A: Physical, 2004, 110(1/2/3): 282-288.
[11] ZHU Y Q, QIN M, YE Y Z, et al. Modelling and characterization of a robust, low-power and wide-range thermal wind sensor[J]. Microsystem Technologies, 2017, 23(12): 5571-5585.
[12] CERIMOVIC S, TALIC A, BEIGELBECK R, et al. Bidirectional micromachined flow sensor featuring a hot film made of amorphous germanium[J]. Measurement Science and Technology, 2013, 24(8): 084002.
[13] ASHAUER M, GLOSCH H, HEDRICH F, et al. Thermal flow sensor for liquids and gases based on combinations of two principles[J]. Sensors and Actuators A: Physical, 1999, 73(1/2): 7-13.
[14] WANG S, YI Z X, QIN M, et al. Temperature effects of a ceramic MEMS thermal wind sensor based on a temperature-balanced mode[J]. IEEE Sensors Journal, 2019, 19(17): 7254-7260.
[15] GAO S X, YI Z X, YE Y Z, et al. Temperature effect and its compensation of a micromachined 2-D anemometer[J]. IEEE Sensors Journal, 2019, 19(14): 5454-5459.
[16] HUANG Q G, CHEN B, ZHU Y Q, et al. Modeling of temperature effects on micromachined silicon thermal wind sensors[J]. Journal of Microelectromechanical Systems, 2015, 24(6): 2033-2039.
[17] CHEN B, ZHU Y Q, YI Z X, et al. Temperature effects on the wind direction measurement of 2D solid thermal wind sensors[J]. Sensors(Basel, Switzerland), 2015, 15(12): 29871-29881.
[18] YI Z X, WANG D, QIN M, et al. Encapsulation glue effect of encapsulation glue on micromachined thermal wind sensor[J]. IEEE Sensors Letters, 2018, 2(4): 1-3.
[19] KOWALSKI L, RICART J, JIMÉNEZ V, et al. Thermal modelling of the chip for the REMS wind sensor[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2010, 23(4): 340-353.
[20] DALOLA S, CERIMOVIC S, KOHL F, et al. MEMS thermal flow sensor with smart electronic interface circuit[J]. IEEE Sensors Journal, 2012, 12(12): 3318-3328.
[21] SOSNA C, BUCHNER R, LANG W. A temperature compensation circuit for thermal flow sensors operated in constant-temperature-difference mode[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(6): 1715-1721.
[22] SHEN G P, QIN M, HUANG Q G. A system-level model for a silicon thermal flow sensor[J]. Microsystem Technologies, 2009, 15(2): 279-285.
[23] ISHIZUKA M, FUKUOKA Y. Application of the thermal network method to the transient thermal analysis of multichip modules[C]//2nd 1998 IEMT/IMC Symposium(IEEE Cat. No.98EX225). Tokyo: IEEE, 1998: 161-166.
(责任编辑:李艳,周安迪)

备注/Memo

备注/Memo:
收稿日期: 2022-05-26。
作者简介: 陈蓓(1988—), 女, 江苏徐州人, 博士, 讲师。 E-mail: chenbei@cczu.edu.cn
更新日期/Last Update: 1900-01-01