参考文献/References:
[1] CHEN C C, MA W H, ZHAO J C. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chemical Society Reviews, 2010, 39(11): 4206-4219.
[2] KARTHIKEYAN C, ARUNACHALAM P, RAMACHANDRAN K, et al. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications[J]. Journal of Alloys and Compounds, 2020, 828: 154281.
[3] ZHU D D, ZHOU Q X. Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review[J]. Environmental Nanotechnology, Monitoring & Management, 2019, 12: 100255.
[4] MA F K, WU Y Z, SHAO Y L, et al. 0D/2D nanocomposite visible light photocatalyst for highly stable and efficient hydrogen generation via recrystallization of CdS on MoS2 nanosheets[J]. Nano Energy, 2016, 27: 466-474.
[5] LYU J L, LI D P, DAI K, et al. Multi-walled carbon nanotube supported CdS-DETA nanocomposite for efficient visible light photocatalysis[J]. Materials Chemistry and Physics, 2017, 186: 372-381.
[6] QUTUB N, PIRZADA B M, UMAR K, et al. Synthesis, characterization and visible-light driven photocatalysis by differently structured CdS/ZnS sandwich and core-shell nanocomposites[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74: 74-86.
[7] WANG C, ZHAI J L, JIANG H, et al. CdS/Ag2S nanocomposites photocatalyst with enhanced visible light photocatalysis activity[J]. Solid State Sciences, 2019, 98: 106020.
[8] LIU H, WANG X D, WU D Z. Tailoring of bifunctional microencapsulated phase change materials with CdS/SiO2 double-layered shell for solar photocatalysis and solar thermal energy storage[J]. Applied Thermal Engineering, 2018, 134: 603-614.
[9] CAO W, JIANG C Y, CHEN C, et al. A novel Z-scheme CdS/Bi4O5Br2 heterostructure with mechanism analysis: enhanced photocatalytic performance[J]. Journal of Alloys and Compounds, 2021, 861: 158554.
[10] QIU B, LI C, SHEN X Q, et al. Revealing the size effect of metallic CoS2 on CdS nanorods for photocatalytic hydrogen evolution based on Schottky junction[J]. Applied Catalysis a-General, 2020, 592: 117377.
[11] XUE Y X, CHANG Q Q, HU X Y, et al. A simple strategy for selective photocatalysis degradation of organic dyes through selective adsorption enrichment by using a complex film of CdS and carboxylmethyl starch[J]. Journal of Environmental Management, 2020, 274: 111184.
[12] LIU Y P, SHEN S J, ZHANG J T, et al. Cu2-xSe/CdS composite photocatalyst with enhanced visible light photocatalysis activity[J]. Applied Surface Science, 2019, 478: 762-769.
[13] THONGTEM T, PHURUANGRAT A, THONGTEM S. Characterization of MeWO4(Me = Ba, Sr and Ca)nanocrystallines prepared by sonochemical method[J]. Applied Surface Science, 2008, 254(23): 7581-7585.
[14] PHURUANGRAT A, THONGTEM T, THONGTEM S. Barium molybdate and Barium tungstate nanocrystals synthesized by a cyclic microwave irradiation[J]. Journal of Physics and Chemistry of Solids, 2009, 70(6): 955-959.
[15] KANNAN S, MOHANRAJ K, SIVAKUMAR G. Sonochemically prepared PbWO4 tetragonal-bipyramidal microcrystals and their photoluminescence properties[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2015, 138: 92-98.
[16] RAJENDRAN R, JAYARAMAN V, VARADHARAJAN K. Fabrication of CdS PbWO4 nanocomposite to improve the photocatalytic degradation efficiency of methylene blue under visible light irradiation[J]. Journal of Physics and Chemistry of Solids, 2019, 129: 261-269.
[17] YUE D, CHEN D, LU W, et al. Enhanced photocatalytic performance and morphology evolvement of PbWO4 dendritic nanostructures through Eu3+ doping[J]. RSC Advances, 2016, 6(84): 81447-81453.
[18] CUI H J, SHAO M, LI B B, et al. Facile fabrication of MnWO4/CdS composites for visible-light-driven photocatalytic Cr(VI)reduction[J]. Journal of Physics and Chemistry of Solids, 2020, 136: 109150.
[19] FU H B, PAN C S, ZHANG L W, et al. Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts[J]. Materials Research Bulletin, 2007, 42(4): 696-706.
[20] VAQUERO F, NAVARRO R M, FIERRO J L G. Influence of the solvent on the structure, morphology and performance for H2 evolution of CdS photocatalysts prepared by solvothermal method[J]. Applied Catalysis B: Environmental, 2017, 203: 753-767.
[21] DI T, XU Q, HO W, et al. Review on metal sulphide-based Z-scheme photocatalysts[J]. Chemcatchem, 2019, 11(5): 1394-1411.
[22] JIN J, YU J G, GUO D P, et al. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity[J]. Small, 2015, 11(39): 5262-5271.
[23] WAN B Y, HU C G, LIU H, et al. Glassy state lead tellurite nanobelts: synthesis and properties[J]. Nanoscale Research Letters, 2010, 5(8): 1344-1350.
[24] ZHU B C, XIA P F, LI Y, et al. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst[J]. Applied Surface Science, 2017, 391: 175-183.
[25] NITHIYANANTHAM U, EDE S R, KESAVAN T, et al. Shape-selective formation of MnWO4 nanomaterials on a DNA scaffold: magnetic, catalytic and supercapacitor studies[J]. RSC Advances, 2014, 4(72): 38169-38181.
[26] 蒋善庆, 曹宇, 马佳慧, 等. Ag3VO4/g-C3N4复合材料可见光催化降解MC-LR的性能[J].常州大学学报(自然科学版), 2020, 32(5): 8-16, 26.
[27] XU W N, ZHENG C H, HUA H, et al. Synthesis and photoelectrochemical properties of CdWO4 and CdS/CdWO4 nanostructures[J]. Applied Surface Science, 2015, 327: 140-148.
[28] XU D F, CHENG B, CAO S W, et al. Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation[J]. Applied Catalysis B: Environmental, 2015, 164: 380-388.
相似文献/References:
[1]盛 梅,许 淮,朱毅青.半导体光催化剂及其在环境保护中的应用[J].常州大学学报(自然科学版),2001,(03):40.
SHENG Mei,XU Huai,ZHU Yi -qing.Heterogeneous Photocatalyst on Semiconductor and its Application
to Environmental Protection[J].Journal of Changzhou University(Natural Science Edition),2001,(01):40.
[2]马建锋,黄代琴,邹静,等.活性炭纤维负载Ag3PO4光催化剂的可见光催化性能[J].常州大学学报(自然科学版),2015,(02):45.[doi:10.3969/j.issn.2095-0411.2015.02.010]
MA Jian-feng,HUANG Dai-qin,ZOU Jing,et al.Visible-Light Photocatalytic Activity of Ag3PO4 Dispersed on Actived Carbon Fiber[J].Journal of Changzhou University(Natural Science Edition),2015,(01):45.[doi:10.3969/j.issn.2095-0411.2015.02.010]
[3]王少莽,关 媛,陆 武,等.宽光谱吸收TaON/BiO1.2I0.6制备及甲苯降解研究[J].常州大学学报(自然科学版),2019,31(04):45.[doi:10.3969/j.issn.2095-0411.2019.04.007]
WANG Shaomang,GUAN Yuan,LU Wu,et al.Preparation of TaON/BiO1.2I0.6 with Wide Spectrum Absorption for Purification of Toluene[J].Journal of Changzhou University(Natural Science Edition),2019,31(01):45.[doi:10.3969/j.issn.2095-0411.2019.04.007]