[1]万玉山,王安慰,邵敏,等.Z型异质结PbWO4/CdS的构建及光催化性能[J].常州大学学报(自然科学版),2023,35(01):18-27.[doi:10.3969/j.issn.2095-0411.2023.01.003]
 WAN Yushan,WANG Anwei,SHAO Min,et al.Construction and photocatalytic performance of Z-type heterojunction PbWO4/CdS[J].Journal of Changzhou University(Natural Science Edition),2023,35(01):18-27.[doi:10.3969/j.issn.2095-0411.2023.01.003]
点击复制

Z型异质结PbWO4/CdS的构建及光催化性能()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年01期
页码:
18-27
栏目:
化学化工
出版日期:
2023-01-28

文章信息/Info

Title:
Construction and photocatalytic performance of Z-type heterojunction PbWO4/CdS
文章编号:
2095-0411(2023)01-0018-10
作者:
万玉山王安慰邵敏徐成栋胡浩
(常州大学环境科学与工程学院,江苏常州213164)
Author(s):
WAN Yushan WANG Anwei SHAO Min XU Chengdong HU Hao
(School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China)
关键词:
光催化 硫化镉 复合材料 Z型异质结构 孔雀石绿 降解 太阳能
Keywords:
photocatalysis cadmium sulfide composites materials Z-scheme heterojunction malachite green degradation solar energy
分类号:
X 703
DOI:
10.3969/j.issn.2095-0411.2023.01.003
文献标志码:
A
摘要:
通过水/溶剂热法和机械搅拌法制备了PbWO4/CdS复合光催化剂。利用XRD,Raman分析材料的结构特征,SEM和TEM分析其微观结构,UV-Vis DRS和PL分析其光学特性,通过光电化学测试进一步研究其光生电荷的分离能力。以孔雀石绿(MG)为目标模拟污染物,对不同光催化剂进行可见光光催化降解测试。结果表明, PbWO4/CdS的光电流响应值约是单体CdS的8倍,提高了光生电子的转移和分离效率,光催化性能得到显著增强,在80 min内对MG的降解效率和去除效率分别为96.3%和72.8%,5次光循环实验中降解效率仍能达到90%,具有较强的光稳定性。
Abstract:
The PbWO4/CdS composite photocatalyst was prepared by water/solvothermal method and mechanical stirring method. XRD and Raman were used to analyze the structural characteristics of the material, SEM and TEM were used to analyze its microstructure, UV-Vis DRS and PL were used to analyze its optical properties, and photoelectrochemical measurements were used to analyze the capability of photo-generated charges interface separation. Taking malachite green(MG)as the target to simulate the pollutants, the visible light photocatalytic degradation test was performed on different photocatalysts. The results showed that the photocurrent response value of PbWO4/CdS was about 8 times that of monomer CdS, which improved the transfer and separation efficiency of photo-generated electrons, and thus the photocatalytic performance of PbWO4/CdS had been significantly enhanced.The degradation efficiency and removal efficiency of MG within 80 minutes were 96.3% and 72.8%, respectively. The degradation efficiency could still reach 90% in the 5 light cycle experiments, indicating the strong light stability.

参考文献/References:

[1] CHEN C C, MA W H, ZHAO J C. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chemical Society Reviews, 2010, 39(11): 4206-4219.
[2] KARTHIKEYAN C, ARUNACHALAM P, RAMACHANDRAN K, et al. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications[J]. Journal of Alloys and Compounds, 2020, 828: 154281.
[3] ZHU D D, ZHOU Q X. Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review[J]. Environmental Nanotechnology, Monitoring & Management, 2019, 12: 100255.
[4] MA F K, WU Y Z, SHAO Y L, et al. 0D/2D nanocomposite visible light photocatalyst for highly stable and efficient hydrogen generation via recrystallization of CdS on MoS2 nanosheets[J]. Nano Energy, 2016, 27: 466-474.
[5] LYU J L, LI D P, DAI K, et al. Multi-walled carbon nanotube supported CdS-DETA nanocomposite for efficient visible light photocatalysis[J]. Materials Chemistry and Physics, 2017, 186: 372-381.
[6] QUTUB N, PIRZADA B M, UMAR K, et al. Synthesis, characterization and visible-light driven photocatalysis by differently structured CdS/ZnS sandwich and core-shell nanocomposites[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74: 74-86.
[7] WANG C, ZHAI J L, JIANG H, et al. CdS/Ag2S nanocomposites photocatalyst with enhanced visible light photocatalysis activity[J]. Solid State Sciences, 2019, 98: 106020.
[8] LIU H, WANG X D, WU D Z. Tailoring of bifunctional microencapsulated phase change materials with CdS/SiO2 double-layered shell for solar photocatalysis and solar thermal energy storage[J]. Applied Thermal Engineering, 2018, 134: 603-614.
[9] CAO W, JIANG C Y, CHEN C, et al. A novel Z-scheme CdS/Bi4O5Br2 heterostructure with mechanism analysis: enhanced photocatalytic performance[J]. Journal of Alloys and Compounds, 2021, 861: 158554.
[10] QIU B, LI C, SHEN X Q, et al. Revealing the size effect of metallic CoS2 on CdS nanorods for photocatalytic hydrogen evolution based on Schottky junction[J]. Applied Catalysis a-General, 2020, 592: 117377.
[11] XUE Y X, CHANG Q Q, HU X Y, et al. A simple strategy for selective photocatalysis degradation of organic dyes through selective adsorption enrichment by using a complex film of CdS and carboxylmethyl starch[J]. Journal of Environmental Management, 2020, 274: 111184.
[12] LIU Y P, SHEN S J, ZHANG J T, et al. Cu2-xSe/CdS composite photocatalyst with enhanced visible light photocatalysis activity[J]. Applied Surface Science, 2019, 478: 762-769.
[13] THONGTEM T, PHURUANGRAT A, THONGTEM S. Characterization of MeWO4(Me = Ba, Sr and Ca)nanocrystallines prepared by sonochemical method[J]. Applied Surface Science, 2008, 254(23): 7581-7585.
[14] PHURUANGRAT A, THONGTEM T, THONGTEM S. Barium molybdate and Barium tungstate nanocrystals synthesized by a cyclic microwave irradiation[J]. Journal of Physics and Chemistry of Solids, 2009, 70(6): 955-959.
[15] KANNAN S, MOHANRAJ K, SIVAKUMAR G. Sonochemically prepared PbWO4 tetragonal-bipyramidal microcrystals and their photoluminescence properties[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2015, 138: 92-98.
[16] RAJENDRAN R, JAYARAMAN V, VARADHARAJAN K. Fabrication of CdS PbWO4 nanocomposite to improve the photocatalytic degradation efficiency of methylene blue under visible light irradiation[J]. Journal of Physics and Chemistry of Solids, 2019, 129: 261-269.
[17] YUE D, CHEN D, LU W, et al. Enhanced photocatalytic performance and morphology evolvement of PbWO4 dendritic nanostructures through Eu3+ doping[J]. RSC Advances, 2016, 6(84): 81447-81453.
[18] CUI H J, SHAO M, LI B B, et al. Facile fabrication of MnWO4/CdS composites for visible-light-driven photocatalytic Cr(VI)reduction[J]. Journal of Physics and Chemistry of Solids, 2020, 136: 109150.
[19] FU H B, PAN C S, ZHANG L W, et al. Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts[J]. Materials Research Bulletin, 2007, 42(4): 696-706.
[20] VAQUERO F, NAVARRO R M, FIERRO J L G. Influence of the solvent on the structure, morphology and performance for H2 evolution of CdS photocatalysts prepared by solvothermal method[J]. Applied Catalysis B: Environmental, 2017, 203: 753-767.
[21] DI T, XU Q, HO W, et al. Review on metal sulphide-based Z-scheme photocatalysts[J]. Chemcatchem, 2019, 11(5): 1394-1411.
[22] JIN J, YU J G, GUO D P, et al. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity[J]. Small, 2015, 11(39): 5262-5271.
[23] WAN B Y, HU C G, LIU H, et al. Glassy state lead tellurite nanobelts: synthesis and properties[J]. Nanoscale Research Letters, 2010, 5(8): 1344-1350.
[24] ZHU B C, XIA P F, LI Y, et al. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst[J]. Applied Surface Science, 2017, 391: 175-183.
[25] NITHIYANANTHAM U, EDE S R, KESAVAN T, et al. Shape-selective formation of MnWO4 nanomaterials on a DNA scaffold: magnetic, catalytic and supercapacitor studies[J]. RSC Advances, 2014, 4(72): 38169-38181.
[26] 蒋善庆, 曹宇, 马佳慧, 等. Ag3VO4/g-C3N4复合材料可见光催化降解MC-LR的性能[J].常州大学学报(自然科学版), 2020, 32(5): 8-16, 26.
[27] XU W N, ZHENG C H, HUA H, et al. Synthesis and photoelectrochemical properties of CdWO4 and CdS/CdWO4 nanostructures[J]. Applied Surface Science, 2015, 327: 140-148.
[28] XU D F, CHENG B, CAO S W, et al. Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation[J]. Applied Catalysis B: Environmental, 2015, 164: 380-388.

相似文献/References:

[1]盛 梅,许 淮,朱毅青.半导体光催化剂及其在环境保护中的应用[J].常州大学学报(自然科学版),2001,(03):40.
 SHENG Mei,XU Huai,ZHU Yi -qing.Heterogeneous Photocatalyst on Semiconductor and its Application to Environmental Protection[J].Journal of Changzhou University(Natural Science Edition),2001,(01):40.
[2]马建锋,黄代琴,邹静,等.活性炭纤维负载Ag3PO4光催化剂的可见光催化性能[J].常州大学学报(自然科学版),2015,(02):45.[doi:10.3969/j.issn.2095-0411.2015.02.010]
 MA Jian-feng,HUANG Dai-qin,ZOU Jing,et al.Visible-Light Photocatalytic Activity of Ag3PO4 Dispersed on Actived Carbon Fiber[J].Journal of Changzhou University(Natural Science Edition),2015,(01):45.[doi:10.3969/j.issn.2095-0411.2015.02.010]
[3]王少莽,关 媛,陆 武,等.宽光谱吸收TaON/BiO1.2I0.6制备及甲苯降解研究[J].常州大学学报(自然科学版),2019,31(04):45.[doi:10.3969/j.issn.2095-0411.2019.04.007]
 WANG Shaomang,GUAN Yuan,LU Wu,et al.Preparation of TaON/BiO1.2I0.6 with Wide Spectrum Absorption for Purification of Toluene[J].Journal of Changzhou University(Natural Science Edition),2019,31(01):45.[doi:10.3969/j.issn.2095-0411.2019.04.007]

备注/Memo

备注/Memo:
收稿日期: 2022-08-19。
基金项目: 江苏省研究生实践创新资助项目(SJCX20_0938)。
作者简介: 万玉山(1969—), 男, 安徽淮北人, 博士, 教授。E-mail: wanyushan@cczu.edu.cn
更新日期/Last Update: 1900-01-01