[1]娄超,李铭,万德浩,等.水-乙酸甲酯-四氢呋喃三元共沸物系热集成萃取精馏工艺[J].常州大学学报(自然科学版),2023,35(01):34-42.[doi:10.3969/j.issn.2095-0411.2023.01.005]
 LOU Chao,LI Ming,WAN Dehao,et al.Heat integrated extractive distillation process for water-methyl acetate-tetrahydrofuran azeotrope system[J].Journal of Changzhou University(Natural Science Edition),2023,35(01):34-42.[doi:10.3969/j.issn.2095-0411.2023.01.005]
点击复制

水-乙酸甲酯-四氢呋喃三元共沸物系热集成萃取精馏工艺()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年01期
页码:
34-42
栏目:
化学化工
出版日期:
2023-01-28

文章信息/Info

Title:
Heat integrated extractive distillation process for water-methyl acetate-tetrahydrofuran azeotrope system
文章编号:
2095-0411(2023)01-0034-09
作者:
娄超李铭万德浩恽一杨德明
(常州大学石油化工学院,江苏常州213164)
Author(s):
LOU Chao LI Ming WAN Dehao YUN Yi YANG Deming
(School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China)
关键词:
水-乙酸甲酯-四氢呋喃 萃取精馏 热集成 能耗 年总费用
Keywords:
water-methyl acetate-tetrahydrofuran extractive distillation heat integration energy consumption annual total cost
分类号:
TQ 028
DOI:
10.3969/j.issn.2095-0411.2023.01.005
文献标志码:
A
摘要:
针对水-乙酸甲酯-四氢呋喃三元共沸体系的特点,提出了热集成萃取精馏工艺对其进行分离研究。选择WILSON热力学模型计算该物系的气液相平衡数据,利用ASPEN PLUS软件中的两相闪蒸模块,模拟得到了不同萃取剂条件下,该物系各共沸组分间的相对挥发度。结果表明,乙二醇作为该物系的萃取剂比较合适,且最佳的溶剂比为0.37。在此基础上,以能耗和年总费用(CAT)作为技术经济评价指标,对常规三塔萃取精馏工艺进行了模拟与参数优化,并利用夹点分析技术对精馏系统的换热网络进行了优化。基于换热网络的优化结果,对常规三塔萃取精馏工艺进行了热量集成。研究结果表明,与常规三塔萃取精馏工艺相比,热集成萃取精馏工艺其能耗降低约34.70%,CAT节省约21.98%,热力学效率提高约36.34%。因此,热集成萃取精馏工艺是分离该三元共沸物系比较合适的节能工艺。
Abstract:
In view of the characteristics of the water-methyl acetate-tetrahydrofuran ternary azeotropic system, a heat integrated extractive distillation process was proposed to study its separation. The WILSON thermodynamic model was selected to calculate the vapor-liquid equilibrium data of the system, and the two-phase flash module in ASPEN PLUS software was used to simulate the relative volatility between the azeotropic components for the system under different extractant conditions. The results showed that ethylene glycol was more suitable as the extractant for the system, and the best solvent ratio was 0.37. On this basis, taking energy consumption and annual total cost(CAT)as technical and economic evaluation indicators, the conventional three-column extractive distillation process was simulated and the parameters were optimized, and the heat exchange network of the distillation system was optimized by using pinch point analysis technology. Based on the optimized results of the heat exchange network, the conventional three-column extractive distillation process was integrated with heat. The research results showed that compared with the conventional three-column extractive distillation process, the heat integrated extractive distillation process can reduce energy consumption by about 34.70%, save CAT about 21.98%, and increase thermodynamic efficiency by 36.34%. Therefore, the heat integrated extractive distillation process is a more suitable energy-saving process route for separating the ternary azeotrope system.

参考文献/References:

[1] 韩淑萃, 杨金杯. 变压精馏和萃取精馏分离四氢呋喃-水模拟及节能[J]. 化学工程, 2018, 46(11): 6-10, 62.
[2] 马春蕾, 唐建可. 萃取精馏分离四氢呋喃-水共沸物的模拟研究[J]. 现代化工, 2016, 36(9): 182-185, 187.
[3] WANG Y L, ZHANG Z, ZHANG H, et al. Control of heat integrated pressure-swing-distillation process for separating azeotropic mixture of tetrahydrofuran and methanol[J]. Industrial & Engineering Chemistry Research, 2015, 54(5): 1646-1655.
[4] WANG Y L, CUI P Z, ZHANG Z. Heat-integrated pressure-swing-distillation process for separation of tetrahydrofuran/methanol with different feed compositions[J]. Industrial & Engineering Chemistry Research, 2014, 53(17): 7186-7194.
[5] 王俊, 王克良. 萃取精馏分离甲醇-四氢呋喃共沸体系的流程模拟[J]. 山东化工, 2017, 46(19): 153-154, 157.
[6] 黄动昊, 张志刚, 郑立娇, 等. 萃取精馏分离四氢呋喃/水共沸物系的Aspen模拟[J]. 沈阳化工大学学报, 2015, 29(3): 211-215.
[7] 洪素芬. 四氢呋喃-水体系变压共沸精馏模拟[J]. 化学工程与装备, 2018(11): 47-49.
[8] 沈体峰, 仇汝臣, 万京帆, 等. 四氢呋喃-水高低压双塔共沸精馏设计与热集成[J]. 当代化工, 2015, 44(10): 2418-2421.
[9] 刘鑫洋, 尚大军, 刘智勇. 四氢呋喃-水共沸物体系分离方法[J]. 现代化工, 2017, 37(10): 168-171.
[10] 张光旭, 王延儒, 卞白桂, 等. 四氢呋喃-水恒沸物萃取精馏的模拟计算[J]. 武汉化工学院学报, 2003, 25(1): 36-39.
[11] 张光旭, 王延儒, 卞白桂, 等. 四氢呋喃-水恒沸物萃取精馏过程的三塔优化计算[J]. 武汉化工学院学报, 2004, 26(4): 27-30.
[12] GU J L, YOU X Q, TAO C Y, et al. Energy-saving reduced pressure extractive distillation with heat integration for separating biazeotropic ternary mixture tetrahydrofuran-methanol-water[J]. Industrial & Engineering Chemistry Research, 2018, 57(40): 13498-13510.
[13] 王克良, 李静, 刘萍, 等. 变压精馏分离乙酸甲酯和甲醇共沸物[J]. 化学工程, 2019, 47(10): 48-52.
[14] 刘艳杰, 潘高峰, 王桂英, 等. 萃取精馏分离乙酸甲酯-甲醇共沸物的模拟[J]. 青岛科技大学学报(自然科学版), 2015, 36(6): 635-639.
[15] GAO X X, ZHU B Y, MA J Q, et al. A combination of pressure-swing and extractive distillation for separating complex binary azeotropic system[J]. Chemical Engineering and Processing: Process Intensification, 2017, 122: 269-276.
[16] 曹慧斌, 王洪海, 李春利, 等. 乙酸甲酯-甲醇-水的热集成萃取精馏工艺[J]. 现代化工, 2017, 37(4): 148-151, 153.
[17] 杨德明, 朱碧云, 顾强, 等. 基于机械蒸汽再压缩和有机朗肯循环技术的双溶剂协同萃取精馏分离乙酸甲酯-甲醇-水节能工艺[J]. 化工进展, 2018, 37(5): 2010-2015.
[18] 程能林. 溶剂手册[M]. 5版. 北京: 化学工业出版社, 2015.
[19] GAO X X, GU Q, MA J Q, et al. MVR heat pump distillation coupled with ORC process for separating a benzene-toluene mixture[J]. Energy, 2018, 143: 658-665.
[20] CHEN J X, YE Q, LIU T, et al. Improving the performance of heterogeneous azeotropic distillation via self-heat recuperation technology[J]. Chemical Engineering Research and Design, 2019, 141: 516-528.
[21] GU J L, YOU X Q, TAO C Y, et al. Improved design and optimization for separating tetrahydrofuran-water azeotrope through extractive distillation with and without heat integration by varying pressure[J]. Chemical Engineering Research and Design, 2018, 133: 303-313.
[22] YANG D M, LENG B Q, LI T, et al. Energy saving research on multi-effect evaporation crystallization process of bittern based on MVR and TVR heat pump technology[J]. American Journal of Chemical Engineering, 2020, 8(3): 54.
[23] SUPHANIT B, BISCHERT A, NARATARUKSA P. Exergy loss analysis of heat transfer across the wall of the dividing-wall distillation column[J]. Energy, 2007, 32(11): 2121-2134.
[24] 李文秀, 陈金玲, 张弢. 萃取精馏分离苯-异丙醇共沸体系的模拟[J]. 现代化工, 2019, 39(2): 211-214.
[25] 任琪, 秦俏, 张建海, 等. 丙酮-氯仿萃取精馏分离工艺优化研究[J]. 现代化工, 2019, 39(3): 219-222.
[26] 李朋广, 刘欣然, 高瑞昶. 萃取精馏分离乙酸乙酯和丁酮的研究[J]. 现代化工, 2019, 39(6): 219-223.

相似文献/References:

[1]叶 青,熊晓娟,秦继伟,等.萃取和热集成变压精馏分离异丙醇与异丙醚的模拟[J].常州大学学报(自然科学版),2015,(01):46.[doi:10.3969/ j.issn.2095-0411.2015.01.009]
 YE Qing,XIONG Xiao-juan,QIN Ji-wei,et al.Simulation of the Separation for Isopropanol and Diisopropyl ether by Extractive Distillation and Heat Integration Pressure Swing Distillation[J].Journal of Changzhou University(Natural Science Edition),2015,(01):46.[doi:10.3969/ j.issn.2095-0411.2015.01.009]
[2]戚 律,崔 佳,徐 荣,等.COSMO-SAC法筛选环戊烷/新己烷分离萃取剂及过程模拟[J].常州大学学报(自然科学版),2021,33(05):43.[doi:10.3969/j.issn.2095-0411.2021.05.006]
 QI Lyu,CUI Jia,XU Rong,et al.Solvents Screening for Extractive Distillation of Cyclopentane and Neohexane Based on COSMO-SAC Model and Process Simulation[J].Journal of Changzhou University(Natural Science Edition),2021,33(01):43.[doi:10.3969/j.issn.2095-0411.2021.05.006]

备注/Memo

备注/Memo:
收稿日期: 2022-06-02。
作者简介: 娄超(1997—), 男, 江苏南京人, 硕士生。通信联系人: 杨德明(1966—), E-mail: dmy216@163.com
更新日期/Last Update: 1900-01-01