参考文献/References:
[1] KANAPATHIPILLAI M, BROCK A, INGBER D E. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment[J].Advanced Drug Delivery Reviews, 2014, 79/80: 107-118.
[2] PERRAULT S D, WALKEY C, JENNINGS T, et al. Mediating tumor targeting efficiency of nanoparticles through design[J]. Nano Letters, 2009, 9(5): 1909-1915.
[3] WILHELM S, TAVARES A J, DAI Q, et al. Analysis of nanoparticle delivery to tumours[J].Nature Reviews Materials, 2016, 1: 16014.
[4] WANG A Z, LANGER R, FAROKHZAD O C. Nanoparticle delivery of cancer drugs[J]. Annual Review of Medicine, 2012, 63: 185-198.
[5] DAI Y L, XU C, SUN X L, et al. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment[J]. Chemical Society Reviews, 2017, 46(12): 3830-3852.
[6] MALEKI-DIZAJ S, SHARIFI S, AHMADIAN E, et al. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system[J]. Expert Opinion on Drug Delivery, 2019, 16(4): 331-345.
[7] SZIVÁK I, BEHRA R, SIGG L. Metal-induced reactive oxygen species production in chlamydomonas reinhardtii(Chlorophyceae)[J]. Journal of Phycology, 2009, 45(2): 427-435.
[8] KAWANISHI S, HIRAKU Y, MURATA M, et al. The role of metals in site-specific DNA damage with reference to carcinogenesis[J]. Free Radical Biology& Medicine, 2002, 32(9): 822-832.
[9] MALEKI-DIZAJ S, BARZEGAR-JALALI M, ZARRINTAN M H, et al. Calcium carbonate nanoparticles as cancer drug delivery system[J]. Expert Opinion on Drug Delivery, 2015, 12(10): 1649-1660.
[10] HE X W, LIU T, XIAO Y, et al. Vascular endothelial growth factor-C siRNA delivered via calcium carbonate nanoparticle effectively inhibits lymphangiogenesis and growth of colorectal cancer in vivo[J]. Cancer Biotherapy and Radiopharmaceuticals, 2009, 24(2): 249-259.
[11] KUMAR V, DEV A, GUPTA A P. Studies of poly(lactic acid)based calcium carbonate nanocomposites[J]. Composites Part B: Engineering, 2014, 56: 184-188.
[12] WU Y L, GU W Y, XU Z P. Enhanced combination cancer therapy using lipid-calcium carbonate/phosphate nanoparticles as a targeted delivery platform[J]. Nanomedicine(London, England), 2019, 14(1): 77-92.
[13] CHEN S, ZHAO D, LI F, et al. Co-delivery of genes and drugs with nanostructured calcium carbonate for cancer therapy[J]. RSC Advances, 2012, 2(5): 1820.
[14] CHEN Y X, JI X B, ZHAO G Q, et al. Facile preparation of cubic calcium carbonate nanoparticles with hydrophobic properties via a carbonation route[J]. Powder Technology, 2010, 200(3): 144-148.
[15] CASANOVA H, HIGUITA L P. Synthesis of calcium carbonate nanoparticles by reactive precipitation using a high pressure jet homogenizer[J]. Chemical Engineering Journal, 2011, 175: 569-578.
[16] SUN S T, GEBAUER D, CÖLFEN H. A solvothermal method for synthesizing monolayer protected amorphous calcium carbonate clusters[J]. Chemical Communications(Cambridge, England), 2016, 52(43): 7036-7038.
[17] DONNELLY F C, PURCELL-MILTON F, FRAMONT V, et al. Synthesis of CaCO3nano- and micro-particles by dry ice carbonation[J]. Chemical Communications, 2017, 53(49): 6657-6660.
[18] WANG C, LIU X R, CHEN S Q, et al. Facile preparation of phospholipid-amorphous calcium carbonate hybrid nanoparticles: toward controllable burst drug release and enhanced tumor penetration[J]. Chemical Communications(Cambridge, England), 2018, 54(93): 13080-13083.
[19] WANG C, CHEN S Q, WANG Y X, et al. Lipase-triggered water-responsive “Pandora's box” for cancer therapy: toward induced neighboring effect and enhanced drug penetration[J]. Advanced Materials, 2018, 30(14): 1706407.
[20] WANG C, CHEN S Q, YU Q, et al. Taking advantage of the disadvantage: employing the high aqueous instability of amorphous calcium carbonate to realize burst drug release within cancer cells[J]. Journal of Materials Chemistry B, 2017, 5(11): 2068-2073.
[21] GUO Y M, LI H, SHI W K, et al. Targeted delivery and pH-responsive release of doxorubicin to cancer cells using calcium carbonate/hyaluronate/glutamate mesoporous hollow spheres[J]. Journal of Colloid and Interface Science, 2017, 502: 59-66.
[22] ZHAO Y, LUO Z, LI M H, et al. A preloaded amorphous calcium carbonate/Doxorubicin@Silica nanoreactor for pH-responsive delivery of an anticancer drug[J]. Angewandte Chemie International Edition, 2015, 54(3): 919-922.
[23] KIM B J, MIN K H, HWANG G H, et al. Calcium carbonate-mineralized polymer nanoparticles for pH-responsive robust nanocarriers of docetaxel[J]. Macromolecular Research, 2015, 23(1): 111-117.
[24] UENO Y, FUTAGAWA H, TAKAGI Y, et al. Drug-incorporating calcium carbonate nanoparticles for a new delivery system[J]. Journal of Controlled Release, 2005, 103(1): 93-98.
[25] WEI W, MA G H, HU G, et al. Preparation of hierarchical hollow CaCO3particles and the application as anticancer drug carrier[J]. Journal of the American Chemical Society, 2008, 130(47): 15808-15810.
[26] WANG C, CHEN S Q, BAO L, et al. Size-controlled preparation and behavior study of phospholipid-calcium carbonate hybrid nanoparticles[J]. International Journal of Nanomedicine, 2020, 15: 4049-4062.
[27] SOM A, RALIYA R, TIAN L M, et al. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo[J]. Nanoscale, 2016, 8(25): 12639-12647.
[28] LIU X R, WANG C, MA H S, et al. Water-responsive hybrid nanoparticles codelivering ICG and DOX effectively treat breast cancer via hyperthermia-aided DOX functionality and drug penetration[J]. Advanced Healthcare Materials, 2019, 8(8): 1801486.
[29] WANG C, YU F Y, LIU X R, et al. Cancer-specific therapy by artificial modulation of intracellular calcium concentration[J]. Advanced Healthcare Materials, 2019, 8(18): 1900501.
[30] FAN W L, QI Y, WANG R R, et al. Calcium carbonate-methylene blue nanohybrids for photodynamic therapy and ultrasound imaging[J]. Science China Life Sciences, 2018, 61(4): 483-491.
[31] FENG Q H, ZHANG W X, YANG X M, et al. pH/ultrasound dual-responsive gas generator for ultrasound imaging-guided therapeutic inertial cavitation and sonodynamic therapy[J]. Advanced Healthcare Materials, 2018, 7(5): 1700957.
[32] KONG F, ZHANG H B, ZHANG X, et al. Biodegradable photothermal and pH responsive calcium Carbonate@Phospholipid@Acetalated dextran hybrid platform for advancing biomedical applications[J]. Advanced Functional Materials, 2016, 26(34): 6158-6169.
[33] CHEN C, HAN H F, YANG W, et al. Polyethyleneimine-modified calcium carbonate nanoparticles for p53 gene delivery[J]. Regenerative Biomaterials, 2016, 3(1): 57-63.
[34] ZHAO P X, WU S P, CHENG Y, et al. MiR-375 delivered by lipid-coated doxorubicin-calcium carbonate nanoparticles overcomes chemoresistance in hepatocellular carcinoma[J]. Nanomedicine: Nanotechnology, Biologyand Medicine, 2017, 13(8): 2507-2516.
[35] SHARMA S, VERMA A, TEJA B V, et al. An insight into functionalized calcium based inorganic nanomaterials in biomedicine: trends and transitions[J]. Colloids and Surfaces B: Biointerfaces, 2015, 133: 120-139.