[1]邱琳,王程,崔朋飞,等.碳酸钙纳米给药系统在肿瘤治疗中的应用[J].常州大学学报(自然科学版),2023,35(01):78-85.[doi:10.3969/j.issn.2095-0411.2023.01.010]
 QIU Lin,WANG Cheng,CUI Pengfei,et al.Application of calcium carbonate based nano drug delivery system in cancer therapy[J].Journal of Changzhou University(Natural Science Edition),2023,35(01):78-85.[doi:10.3969/j.issn.2095-0411.2023.01.010]
点击复制

碳酸钙纳米给药系统在肿瘤治疗中的应用()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年01期
页码:
78-85
栏目:
生物医药工程
出版日期:
2023-01-28

文章信息/Info

Title:
Application of calcium carbonate based nano drug delivery system in cancer therapy
文章编号:
2095-0411(2023)01-0078-08
作者:
邱琳王程崔朋飞周舒文胡华安子蒋鹏举王建浩
(常州大学药学院,江苏常州213164)
Author(s):
QIU Lin WANG Cheng CUI Pengfei ZHOU Shuwen HU Huaanzi JIANG Pengju WANG Jianhao
(School of Pharmacy, Changzhou University, Changzhou 213164, China)
关键词:
碳酸钙 纳米给药系统 肿瘤治疗
Keywords:
calcium carbonate nano drug delivery system cancer therapy
分类号:
TK 8
DOI:
10.3969/j.issn.2095-0411.2023.01.010
文献标志码:
A
摘要:
碳酸钙具有成本低廉、毒副作用低等优点,在构建纳米给药系统中具有极大的优势。文章围绕肿瘤治疗的应用需求,分别从碳酸钙纳米粒的优势、碳酸钙纳米粒的制备和递送不同类型肿瘤药物的碳酸钙纳米给药系统等3个方面进行综述,总结了纳米给药系统面临的困境和未来的研究方向。
Abstract:
Calcium carbonate has great advantages in the construction of nano drug delivery systems due to its low cost and high biocompatibility. In this review, focusing on the requirements in cancer therapy, the advantages of calcium carbonate nanoparticles, the preparation of carbonate nanoparticles, and calcium carbonate nanoparticle-based nano drug delivery systems for the delivery of different types of cancer drugs were reviewed. The challenges of this system and future research directions were also summarized.

参考文献/References:

[1] KANAPATHIPILLAI M, BROCK A, INGBER D E. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment[J].Advanced Drug Delivery Reviews, 2014, 79/80: 107-118.
[2] PERRAULT S D, WALKEY C, JENNINGS T, et al. Mediating tumor targeting efficiency of nanoparticles through design[J]. Nano Letters, 2009, 9(5): 1909-1915.
[3] WILHELM S, TAVARES A J, DAI Q, et al. Analysis of nanoparticle delivery to tumours[J].Nature Reviews Materials, 2016, 1: 16014.
[4] WANG A Z, LANGER R, FAROKHZAD O C. Nanoparticle delivery of cancer drugs[J]. Annual Review of Medicine, 2012, 63: 185-198.
[5] DAI Y L, XU C, SUN X L, et al. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment[J]. Chemical Society Reviews, 2017, 46(12): 3830-3852.
[6] MALEKI-DIZAJ S, SHARIFI S, AHMADIAN E, et al. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system[J]. Expert Opinion on Drug Delivery, 2019, 16(4): 331-345.
[7] SZIVÁK I, BEHRA R, SIGG L. Metal-induced reactive oxygen species production in chlamydomonas reinhardtii(Chlorophyceae)[J]. Journal of Phycology, 2009, 45(2): 427-435.
[8] KAWANISHI S, HIRAKU Y, MURATA M, et al. The role of metals in site-specific DNA damage with reference to carcinogenesis[J]. Free Radical Biology& Medicine, 2002, 32(9): 822-832.
[9] MALEKI-DIZAJ S, BARZEGAR-JALALI M, ZARRINTAN M H, et al. Calcium carbonate nanoparticles as cancer drug delivery system[J]. Expert Opinion on Drug Delivery, 2015, 12(10): 1649-1660.
[10] HE X W, LIU T, XIAO Y, et al. Vascular endothelial growth factor-C siRNA delivered via calcium carbonate nanoparticle effectively inhibits lymphangiogenesis and growth of colorectal cancer in vivo[J]. Cancer Biotherapy and Radiopharmaceuticals, 2009, 24(2): 249-259.
[11] KUMAR V, DEV A, GUPTA A P. Studies of poly(lactic acid)based calcium carbonate nanocomposites[J]. Composites Part B: Engineering, 2014, 56: 184-188.
[12] WU Y L, GU W Y, XU Z P. Enhanced combination cancer therapy using lipid-calcium carbonate/phosphate nanoparticles as a targeted delivery platform[J]. Nanomedicine(London, England), 2019, 14(1): 77-92.
[13] CHEN S, ZHAO D, LI F, et al. Co-delivery of genes and drugs with nanostructured calcium carbonate for cancer therapy[J]. RSC Advances, 2012, 2(5): 1820.
[14] CHEN Y X, JI X B, ZHAO G Q, et al. Facile preparation of cubic calcium carbonate nanoparticles with hydrophobic properties via a carbonation route[J]. Powder Technology, 2010, 200(3): 144-148.
[15] CASANOVA H, HIGUITA L P. Synthesis of calcium carbonate nanoparticles by reactive precipitation using a high pressure jet homogenizer[J]. Chemical Engineering Journal, 2011, 175: 569-578.
[16] SUN S T, GEBAUER D, CÖLFEN H. A solvothermal method for synthesizing monolayer protected amorphous calcium carbonate clusters[J]. Chemical Communications(Cambridge, England), 2016, 52(43): 7036-7038.
[17] DONNELLY F C, PURCELL-MILTON F, FRAMONT V, et al. Synthesis of CaCO3nano- and micro-particles by dry ice carbonation[J]. Chemical Communications, 2017, 53(49): 6657-6660.
[18] WANG C, LIU X R, CHEN S Q, et al. Facile preparation of phospholipid-amorphous calcium carbonate hybrid nanoparticles: toward controllable burst drug release and enhanced tumor penetration[J]. Chemical Communications(Cambridge, England), 2018, 54(93): 13080-13083.
[19] WANG C, CHEN S Q, WANG Y X, et al. Lipase-triggered water-responsive “Pandora's box” for cancer therapy: toward induced neighboring effect and enhanced drug penetration[J]. Advanced Materials, 2018, 30(14): 1706407.
[20] WANG C, CHEN S Q, YU Q, et al. Taking advantage of the disadvantage: employing the high aqueous instability of amorphous calcium carbonate to realize burst drug release within cancer cells[J]. Journal of Materials Chemistry B, 2017, 5(11): 2068-2073.
[21] GUO Y M, LI H, SHI W K, et al. Targeted delivery and pH-responsive release of doxorubicin to cancer cells using calcium carbonate/hyaluronate/glutamate mesoporous hollow spheres[J]. Journal of Colloid and Interface Science, 2017, 502: 59-66.
[22] ZHAO Y, LUO Z, LI M H, et al. A preloaded amorphous calcium carbonate/Doxorubicin@Silica nanoreactor for pH-responsive delivery of an anticancer drug[J]. Angewandte Chemie International Edition, 2015, 54(3): 919-922.
[23] KIM B J, MIN K H, HWANG G H, et al. Calcium carbonate-mineralized polymer nanoparticles for pH-responsive robust nanocarriers of docetaxel[J]. Macromolecular Research, 2015, 23(1): 111-117.
[24] UENO Y, FUTAGAWA H, TAKAGI Y, et al. Drug-incorporating calcium carbonate nanoparticles for a new delivery system[J]. Journal of Controlled Release, 2005, 103(1): 93-98.
[25] WEI W, MA G H, HU G, et al. Preparation of hierarchical hollow CaCO3particles and the application as anticancer drug carrier[J]. Journal of the American Chemical Society, 2008, 130(47): 15808-15810.
[26] WANG C, CHEN S Q, BAO L, et al. Size-controlled preparation and behavior study of phospholipid-calcium carbonate hybrid nanoparticles[J]. International Journal of Nanomedicine, 2020, 15: 4049-4062.
[27] SOM A, RALIYA R, TIAN L M, et al. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo[J]. Nanoscale, 2016, 8(25): 12639-12647.
[28] LIU X R, WANG C, MA H S, et al. Water-responsive hybrid nanoparticles codelivering ICG and DOX effectively treat breast cancer via hyperthermia-aided DOX functionality and drug penetration[J]. Advanced Healthcare Materials, 2019, 8(8): 1801486.
[29] WANG C, YU F Y, LIU X R, et al. Cancer-specific therapy by artificial modulation of intracellular calcium concentration[J]. Advanced Healthcare Materials, 2019, 8(18): 1900501.
[30] FAN W L, QI Y, WANG R R, et al. Calcium carbonate-methylene blue nanohybrids for photodynamic therapy and ultrasound imaging[J]. Science China Life Sciences, 2018, 61(4): 483-491.
[31] FENG Q H, ZHANG W X, YANG X M, et al. pH/ultrasound dual-responsive gas generator for ultrasound imaging-guided therapeutic inertial cavitation and sonodynamic therapy[J]. Advanced Healthcare Materials, 2018, 7(5): 1700957.
[32] KONG F, ZHANG H B, ZHANG X, et al. Biodegradable photothermal and pH responsive calcium Carbonate@Phospholipid@Acetalated dextran hybrid platform for advancing biomedical applications[J]. Advanced Functional Materials, 2016, 26(34): 6158-6169.
[33] CHEN C, HAN H F, YANG W, et al. Polyethyleneimine-modified calcium carbonate nanoparticles for p53 gene delivery[J]. Regenerative Biomaterials, 2016, 3(1): 57-63.
[34] ZHAO P X, WU S P, CHENG Y, et al. MiR-375 delivered by lipid-coated doxorubicin-calcium carbonate nanoparticles overcomes chemoresistance in hepatocellular carcinoma[J]. Nanomedicine: Nanotechnology, Biologyand Medicine, 2017, 13(8): 2507-2516.
[35] SHARMA S, VERMA A, TEJA B V, et al. An insight into functionalized calcium based inorganic nanomaterials in biomedicine: trends and transitions[J]. Colloids and Surfaces B: Biointerfaces, 2015, 133: 120-139.

备注/Memo

备注/Memo:
收稿日期: 2022-08-29。
基金项目: 江苏省重点研发计划资助项目(BE2018639); 常州大学2020年科研启动资助基金(ZMF20020455)。
作者简介: 邱琳(1979—), 女, 江苏镇江人, 博士, 副教授。通信联系人: 王建浩(1981—), E-mail: minuswan@163.com
更新日期/Last Update: 1900-01-01