[1]陈军修,杨洋,展杰,等.固溶处理对挤压态Mg-1.5Zn-0.5Y-0.5Zr合金耐蚀及力学性能的影响[J].常州大学学报(自然科学版),2023,35(03):1-7.[doi:10.3969/j.issn.2095-0411.2023.03.001 ]
 CHEN Junxiu,YANG Yang,ZHAN Jie,et al.Effect of solution treatment on corrosion resistance and mechanical properties of extruded Mg-1.5Zn-0.5Y-0.5Zr alloy[J].Journal of Changzhou University(Natural Science Edition),2023,35(03):1-7.[doi:10.3969/j.issn.2095-0411.2023.03.001 ]
点击复制

固溶处理对挤压态Mg-1.5Zn-0.5Y-0.5Zr合金耐蚀及力学性能的影响 ()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年03期
页码:
1-7
栏目:
材料科学与工程
出版日期:
2023-05-28

文章信息/Info

Title:
Effect of solution treatment on corrosion resistance and mechanical properties of extruded Mg-1.5Zn-0.5Y-0.5Zr alloy
文章编号:
2095-0411(2023)03-0001-07
作者:
陈军修杨洋展杰许玉孙俭恒
(常州大学 材料科学与工程学院, 江苏 常州 213164)
Author(s):
CHEN Junxiu YANG Yang ZHAN Jie XU Yu SUN Jianheng
(School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China)
关键词:
Mg-1.5Zn-0.5Y-0.5Zr合金 固溶处理 微观组织 耐蚀性能 力学性能
Keywords:
Mg-1.5Zn-0.5Y-0.5Zr alloy solution treatment microstructure corrosion resistance mechanical properties
分类号:
TG 172
DOI:
10.3969/j.issn.2095-0411.2023.03.001
文献标志码:
A
摘要:
为提高挤压态Mg-1.5Zn-0.5Y-0.5Zr合金的耐蚀性能,研究了不同固溶温度对其耐蚀和力学性能的影响,通过微观组织观察、电化学测试、体外浸泡实验、拉伸实验研究了固溶处理后样品的微观组织与性能。结果表明,固溶处理后合金中的W相减少,耐蚀性能提高,但当温度达到550 ℃时,会进一步造成晶粒粗化,降低了合金的耐蚀性能。合金的强度和塑性随着固溶温度的升高而降低。综合固溶处理后合金的耐蚀和力学性能,推荐500 ℃为最佳固溶处理温度。
Abstract:
In order to improve the corrosion resistance of extruded Mg-1.5Zn-0.5Y-0.5Zr alloy, the effects of different solution treatment temperature on its corrosion resistance and mechanical properties were studied. The microstructure and properties of the samples after solution treatment were studied by microstructure observation, electrochemical test, in vitro immersion test and tensile test. The results show that the W phase in the alloy is reduced and the corrosion resistance is improved after solution treatment. However, when the temperature reaches 550 ℃, further grain coarsening occurs, which reduces the corrosion resistance of the alloy. After solution treatment, the strength and plasticity of the alloy decrease with the increase of solution temperature. Based on the corrosion resistance and mechanical properties of the alloy after solution treatment, 500 ℃ is recommended as the best solution treatment temperature.

参考文献/References:

[1] BIBER R, PAUSER J, GELEIN M, et al. Magnesium-based absorbable metal screws for intra-articular fracture fixation[J]. Case Reports in Orthopedics, 2016: 9673174.
[2] ZHAO D W, HUANG S B, LU F Q, et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head[J]. Biomaterials, 2016, 81: 84-92.
[3] 奚廷斐, 魏利娜, 刘婧, 等. 镁合金全降解血管支架研究进展[J]. 金属学报, 2017, 53(10): 1153-1167.
[4] JIN S, ZHANG D, LU X P, et al. Mechanical properties, biodegradability and cytocompatibility of biodegradable Mg-Zn-Zr-Nd/Y alloys[J]. Journal of Materials Science & Technology, 2020, 47: 190-201.
[5] CHEN J X, YANG Y, XU Y, et al. Effects of heat treatment on degradation, mechanical properties and cytocompatibility of Mg-1.5Zn-0.5Y-0.5Zr alloy[J]. Materials Technology, 2022, 37(11): 1825-1836.
[6] 谭丽丽, 陈军修, 于晓明, 等. 生物可降解MgYREZr合金的研究进展[J]. 金属学报, 2017, 53(10): 1207-1214.
[7] 袁广银, 牛佳林. 可降解医用镁合金在骨修复应用中的研究进展[J]. 金属学报, 2017, 53(10): 1168-1180.
[8] CHEN J X, DONG J H, FU H M, et al. In vitro and in vivo studies on the biodegradable behavior and bone response of Mg69Zn27Ca4 metal glass for treatment of bone defect[J]. Journal of Materials Science & Technology, 2019, 35(10): 2254-2262.
[9] 陈军修. 生物可降解Mg-2Zn-xRE(Gd、Nd、Y)-0.5Zr合金性能及其表面改性研究[D]. 合肥: 中国科学技术大学, 2019.
[10] ZHAO D W, WITTE F, LU F Q, et al. Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective[J]. Biomaterials, 2017, 112: 287-302.
[11] CHEN J X, TAN L L, YU X M, et al. Effect of minor content of Gd on the mechanical and degradable properties of as-cast Mg-2Zn-xGd-0.5Zr alloys[J]. Journal of Materials Science & Technology, 2019, 35(4): 503-511.
[12] 曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008.
[13] ZENG R C, KAINER K U, BLAWERT C, et al. Corrosion of an extruded magnesium alloy ZK60 component: the role of microstructural features[J]. Journal of Alloys and Compounds, 2011, 509(13): 4462-4469.
[14] 邢书明, 武彤, 孙鸿基, 等. 变形铝合金液态模锻及其研究进展[J]. 常州大学学报(自然科学版), 2022, 34(6): 1-8.
[15] 李晓琛, 王世颖, 陈智栋. 深冷处理时间对TC4钛合金微观组织结构及力学性能的影响[J]. 常州大学学报(自然科学版),2022, 34(4): 7-13.
[16] 胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010.
(责任编辑:李艳)

备注/Memo

备注/Memo:
收稿日期: 2022-11-04。
基金项目: 国家自然科学基金青年基金资助项目(52001034); 江苏省高等学校自然科学研究资助项目(20KJB430013); 常州市科技资助项目(CJ20200078)。
作者简介: 陈军修(1987—), 男, 山东日照人, 博士, 副教授。E-mail: czdxcjx@cczu.edu.cn

更新日期/Last Update: 1900-01-01