参考文献/References:
[1] 刘鹏, 刘莉, 周政忠, 等. 垃圾渗滤液污泥的有机结构对热解行为的影响[J]. 常州大学学报(自然科学版), 2021, 33(5): 69-76.
[2] 王体朋, 张润禾, 彭立, 等. 生物质选择性催化热解制备芳香烃的研究进展[J]. 生物质化学工程, 2018, 52(4): 53-59.
[3] WANG Z W, LEI T Z, YANG M, et al. Life cycle environmental impacts of cornstalk briquette fuel in China[J]. Applied Energy, 2017, 192: 83-94.
[4] SUN T L, LEI T Z, LI Z F, et al. Catalytic co-pyrolysis of corn stalk and polypropylene over Zn-Al modified MCM-41 catalysts for aromatic hydrocarbon-rich oil production[J]. Industrial Crops and Products, 2021, 171: 113843.
[5] 郑志锋, 郑云武, 黄元波, 等. 木质生物质催化热解制备富烃生物油研究进展[J]. 林业工程学报, 2019, 4(2): 1-12.
[6] OJHA D K, VIJU D, VINU R. Fast pyrolysis kinetics of lignocellulosic biomass of varying compositions[J]. Energy Conversion and Management, 2021, 10: 100071.
[7] 张大山, 戴如娟, 毛林强, 等. 石化剩余污泥理化性能与热动力学特性研究[J]. 常州大学学报(自然科学版), 2022, 34(1): 33-41.
[8] LU Q, YE X N, ZHANG Z X, et al. Catalytic fast pyrolysis of sugarcane bagasse using activated carbon catalyst in a hydrogen atmosphere to selectively produce 4-ethyl phenol[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 125-131.
[9] 张会岩, 杨海平, 陆强, 等. 生物质定向热解制取高品质液体燃料、化学品和碳材料研究进展[J]. 工程热物理学报, 2021, 42(12): 3031-3044.
[10] HUANG M, MA Z Q, ZHOU B L, et al. Enhancement of the production of bio-aromatics from renewable lignin by combined approach of torrefaction deoxygenation pretreatment and shape selective catalytic fast pyrolysis using metal modified zeolites[J]. Bioresource Technology, 2020, 301: 122754.
[11] SUN H R, LUO Z Y, WANG W B, et al. Porosity roles of micro-mesostructured ZSM-5 in catalytic fast pyrolysis of cellulolytic enzyme lignin for aromatics[J]. Energy Conversion and Management, 2021, 247: 114753.
[12] ZHANG J, GU J, YUAN H R, et al. Catalytic fast pyrolysis of waste mixed cloth for the production of value-added chemicals[J]. Waste Management, 2021, 127: 141-146.
[13] CHEN X, CHEN Y Q, YANG H P, et al. Catalytic fast pyrolysis of biomass: selective deoxygenation to balance the quality and yield of bio-oil[J]. Bioresource Technology, 2019, 273: 153-158.
[14] WANG J, JIANG J C, ZHONG Z P, et al. Catalytic fast co-pyrolysis of bamboo sawdust and waste plastics for enhanced aromatic hydrocarbons production using synthesized CeO2/γ-Al2O3 and HZSM-5[J]. Energy Conversion and Management, 2019, 196: 759-767.
[15] SUN T L, LI Z F, ZHANG Z P, et al. Fast corn stalk pyrolysis and the influence of catalysts on product distribution[J]. Bioresource Technology, 2020, 301: 122739.
[16] WANG G Y, DAI G X, DING S Q, et al. A new insight into pyrolysis mechanism of three typical actual biomass: the influence of structural differences on pyrolysis process[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105184.
[17] WANI LIKUN P K, ZHANG H Y. Insights into pyrolysis of torrefied-biomass, plastics/tire and blends: thermochemical behaviors, kinetics and evolved gas analyses[J]. Biomass and Bioenergy, 2020, 143: 105852.
[18] CHI Y C, XUE J J, ZHUO J K, et al. Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41[J]. Science of the Total Environment, 2018, 633: 1105-1113.
[19] YAO N Y, CAO J P, ZHAO J P, et al. Efficient and selective catalytic pyrolysis of cellulose to monocyclic aromatic hydrocarbons over Zn-containing HZSM-5[J]. Fuel, 2022, 310: 122437.
[20] SUN T L, LEI T Z, LI Z F, et al. Optimization of the pyrolysis carbonization of various corn stalk parts in a rotating bed reactor based on energy yield[J]. Journal of Biobased Materials and Bioenergy, 2018, 12(4): 378-386.
[21] XU J C, LIAO Y F, LIN Y, et al. Study on catalytic pyrolysis of eucalyptus to produce aromatic hydrocarbons by Zn-Fe-Co modified HZSM-5 catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 96-103.
(责任编辑:谭晓荷)