[1]高佳敏,宗玉清,何旺泽,等.NiAl2O4涂层膜的制备及其在油水分离中的应用[J].常州大学学报(自然科学版),2023,35(03):41-51.[doi:10.3969/j.issn.2095-0411.2023.03.006 ]
 GAO Jiamin,ZONG Yuqing,HE Wangze,et al.Preparation of NiAl2O4 coated membrane and its application in oil-water separation[J].Journal of Changzhou University(Natural Science Edition),2023,35(03):41-51.[doi:10.3969/j.issn.2095-0411.2023.03.006 ]
点击复制

NiAl2O4涂层膜的制备及其在油水分离中的应用 ()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年03期
页码:
41-51
栏目:
环境科学与工程
出版日期:
2023-05-28

文章信息/Info

Title:
Preparation of NiAl2O4 coated membrane and its application in oil-water separation
文章编号:
2095-0411(2023)03-0041-11
作者:
高佳敏宗玉清何旺泽薛金娟王明新
(常州大学 环境科学与工程学院, 江苏 常州 213164)
Author(s):
GAO Jiamin ZONG Yuqing HE Wangze XUE Jinjuan WANG Mingxin
(School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China)
关键词:
NiAl2O4 油水分离 复合膜 超亲水/水下超疏油
Keywords:
NiAl2O4 oil-water separation composite membrane super-hydrophilic/underwater super-oleophobic
分类号:
TB 34
DOI:
10.3969/j.issn.2095-0411.2023.03.006
文献标志码:
A
摘要:
以聚偏氟乙烯(PVDF)有机膜为基底,单宁酸(TA)为胶结剂,将尖晶石NiAl2O4无机纳米颗粒均匀修饰到PVDF膜表面,制备了超亲水/水下超疏油型NiAl2O4/TA/PVDF复合膜。系统研究了NiAl2O4/TA/PVDF复合膜的结构、形貌和表面润湿性,评价了复合膜在典型的油水乳液分离中的性能。实验结果表明,NiAl2O4/TA/PVDF复合膜对稳定的油水乳液表现出优异的分离效率(分离效率均高于99%)和较高的膜通量(682~1 302 L·m-2·h-1)。此外,由于膜表面的粗糙结构和特殊润湿性,NiAl2O4/TA/PVDF复合膜具有较好的抗油污染性能,在循环8次分离水包油乳液后仍具有较高的分离效率和膜通量,表现出良好的机械性能和可再生性。本研究为构筑尖晶石基油水分离膜及其在油水分离中的应用提供了新的思路。
Abstract:
Using polyvinylidene fluoride(PVDF)organic membrane as substrate and tannic acid(TA)as binder, spinel NiAl2O4 inorganic nanoparticles were uniformly modified on the surface of PVDF membrane to prepare super-hydrophilic/underwater super-oleophobic NiAl2O4/TA/PVDF composite membrane. The structure, morphology and surface wettability of the NiAl2O4/TA/PVDF composite membrane were systematically studied, and the performance of the composite membrane in the separation of typical oil-water emulsions was evaluated. The experimental results showed that the NiAl2O4/ TA/PVDF composite membrane exhibited excellent separation efficiency(separation efficiency is above 99%)and higher permeation flux(682—1 302 L·m-2·h-1)for stable oil-water emulsions. In addition, due to the rough structure and special wettability of the membrane surface, NiAl2O4/TA/PVDF composite membrane has good oil pollution resistance. After eight cycles of separating oil-in-water emulsion, it still has high separation efficiency and permeation flux, showing good mechanical properties and reproducibility. This research provides a new idea for the construction of spinel-based oil-water separation membranes and their applications in oil-water separation.

参考文献/References:

[1] LI Z D, ZHANG T, WANG M Y, et al. Hierarchical structurized waste brick with opposite wettability for on-demand oil/water separation[J]. Chemosphere, 2020, 251: 126348.
[2] XU P, LI X X. Fabrication of TiO2/SiO2 superhydrophobic coating for efficient oil/water separation[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105538.
[3] WANG J T, HAN F L, CHEN Y H, et al. A pair of MnO2 nanocrystal coatings with inverse wettability on metal meshes for efficient oil/water separation[J]. Separation and Purification Technology, 2019, 209: 119-127.
[4] WU X W, LUO Z, LEI Y, et al. Hierarchical TiO2 nanorod arrays/carbon nanofiber membranes for oil-in-water emulsion separation[J]. Industrial & Engineering Chemistry Research, 2020, 59(48): 21097-21105.
[5] CAO J L, SU Y L, LIU Y N, et al. Self-assembled MOF membranes with underwater superoleophobicity for oil/water separation[J]. Journal of Membrane Science, 2018, 566: 268-277.
[6] WANG B, LIANG W X, GUO Z G, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature[J]. Chemical Society Reviews, 2015, 44(1): 336-361.
[7] XIE A T, CUI J Y, YANG J, et al. Photo-Fenton self-cleaning membranes with robust flux recovery for an efficient oil/water emulsion separation[J]. Journal of Materials Chemistry A, 2019, 7(14): 8491-8502.
[8] SUN Y H, ZHAO R G, WANG Q Y, et al. Superwetting TiO2-decorated single-walled carbon nanotube composite membrane for highly efficient oil-in-water emulsion separation[J]. Korean Journal of Chemical Engineering, 2020, 37(11): 2054-2063.
[9] MENG F N, ZHANG M Q, DING K, et al. Cell membrane mimetic PVDF microfiltration membrane with enhanced antifouling and separation performance for oil/water mixtures[J]. Journal of Materials Chemistry A, 2018, 6(7): 3231-3241.
[10] ZHENG X, GUO Z Y, TIAN D L, et al. Underwater self-cleaning scaly fabric membrane for oily water separation[J]. ACS Applied Materials & Interfaces, 2015, 7(7): 4336-4343.
[11] WEI C J, LIN L G, ZHAO Y P, et al. Fabrication of pH-sensitive superhydrophilic/underwater superoleophobic poly(vinylidene fluoride)-graft-(SiO2 nanoparticles and PAMAM dendrimers)membranes for oil-water separation[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 19130-19139.
[12] XIONG Z, LIN H B, ZHONG Y, et al. Robust superhydrophilic polylactide(PLA)membranes with a TiO2 nano-particle inlaid surface for oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(14): 6538-6545.
[13] VENKATESH K, ARTHANAREESWARAN G, CHANDRA B A, et al. Diethylenetriaminepentaacetic acid-functionalized multi-walled carbon nanotubes/titanium oxide-PVDF nanofiber membrane for effective separation of oil/water emulsion[J]. Separation and Purification Technology, 2021, 257: 117926.
[14] 罗钟琳, 李炎, 段聪, 等. PDMS/SiO2/PVDF/KH-550超疏水铜网的制备[J]. 常州大学学报(自然科学版), 2019, 31(4): 31-38.
[15] CHEN F T, SHI X X, CHEN X B, et al. Preparation and characterization of amphiphilic copolymer PVDF-g-PMABS and its application in improving hydrophilicity and protein fouling resistance of PVDF membrane[J]. Applied Surface Science, 2018, 427: 787-797.
[16] LI Z K, LANG W Z, MIAO W, et al. Preparation and properties of PVDF/SiO2@GO nanohybrid membranes via thermally induced phase separation method[J]. Journal of Membrane Science, 2016, 511: 151-161.
[17] YANG R, JANG H, STOCKER R, et al. Synergistic prevention of biofouling in seawater desalination by zwitterionic surfaces and low-level chlorination[J]. Advanced Materials, 2014, 26(11): 1711-1718.
[18] QIN A W, LI X, MA B M, et al. Preparation and characterization of poly(vinylidene)fluoride membranes reinforced by modified nano-SiO2 particles[J]. Materials Science Forum, 2014, 789: 201-204.
[19] HONG X T, ZHOU Y M, YE Z L, et al. Enhanced hydrophilicity and antibacterial activity of PVDF ultrafiltration membrane using Ag3PO4/TiO2 nanocomposite against E.coli[J]. Desalination and Water Treatment, 2017, 75: 26-33.
[20] LI J, ZHAO Z H, SHEN Y Q, et al. Fabrication of attapulgite coated membranes for effective separation of oil-in-water emulsion in highly acidic, alkaline, and concentrated salty environments[J]. Advanced Materials Interfaces, 2017, 4(16): 1700364.
[21] WANG X Y, LI M J, SHEN Y Q, et al. Facile preparation of loess-coated membranes for multifunctional surfactant-stabilized oil-in-water emulsion separation[J]. Green Chemistry, 2019, 21(11): 3190-3199.
[22] ZHANG H J, SHEN Y Q, LI M J, et al. Egg shell powders-coated membrane for surfactant-stabilized crude oil-in-water emulsions efficient separation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10880-10887.
[23] LAOKUL P, AMORNKITBAMRUNG V, SERAPHIN S, et al. Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution[J]. Current Applied Physics, 2011, 11(1): 101-108.
[24] LIU Y, LI C, XU J, et al. Electroactivation-induced spinel ZnV2O4 as a high-performance cathode material for aqueous zinc-ion battery[J]. Nano Energy, 2020, 67: 104211.
[25] ZHANG S, LIU S J, ZHU X C, et al. Low temperature catalytic oxidation of propane over cobalt-cerium spinel oxides catalysts[J]. Applied Surface Science, 2019, 479: 1132-1140.
[26] MADDAHFAR M, RAMEZANI M, SADEGHI M, et al. NiAl2O4 nanoparticles: synthesis and characterization through modify sol-gel method and its photocatalyst application[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(10): 7745-7750.
[27] ATCHUTA S R, SAKTHIVEL S, BARSHILIA H C. Nickel doped cobaltite spinel as a solar selective absorber coating for efficient photothermal conversion with a low thermal radiative loss at high operating temperatures[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109917.
[28] HAO X D, LIU T, LI W J, et al. Mixed potential gas phase sensor using YSZ solid electrolyte and spinel-type oxides AMn2O4(A=Co, Zn and Cd)sensing electrodes[J]. Sensors and Actuators B: Chemical, 2020, 302: 127206.
[29] RAHIM M A, EJIMA H, CHO K L, et al. Coordination-driven multistep assembly of metal-polyphenol films and capsules[J]. Chemistry of Materials, 2014, 26(4): 1645-1653.
[30] KIM S, KIM D S, KANG S M. Reversible layer-by-layer deposition on solid substrates inspired by mussel byssus cuticle[J]. Chemistry, an Asian Journal, 2014, 9(1): 63-66.
[31] GAO J M, MA S S, XU M J, et al. Photo-Fenton superwettable NiFe2O4/TA/PVDF composite membrane for organic pollutant degradation with successively oil-in-water separation[J]. Chemosphere, 2022, 286: 131705.
[32] WU J D, HOU Z Q, YU Z X, et al. Facile preparation of metal-polyphenol coordination complex coated PVDF membrane for oil/water emulsion separation[J]. Separation and Purification Technology, 2021, 258: 118022.
[33] HU J X, ZHAN Y Q, ZHANG G Y, et al. Durable and super-hydrophilic/underwater super-oleophobic two-dimensional MXene composite lamellar membrane with photocatalytic self-cleaning property for efficient oil/water separation in harsh environments[J]. Journal of Membrane Science, 2021, 637: 119627.
[34] 高杨, 王胜, 吕丽荣, 等. NiAl2O4催化燃烧丙烷性能研究[J]. 应用化工, 2021, 50(1): 15-18, 22.
[35] VENKATARAMANA C, BOTSA S M, SHYAMALA P, et al. Photocatalytic degradation of polyethylene plastics by NiAl2O4 spinels-synthesis and characterization[J]. Chemosphere, 2021, 265: 129021.
[36] RAGUPATHI C, VIJAYA J J, KENNEDY L J. Preparation, characterization and catalytic properties of nickel aluminate nanoparticles: a comparison between conventional and microwave method[J]. Journal of Saudi Chemical Society, 2017, 21: S231-S239.
[37] WENZEL R N. Surface roughness and contact angle[J]. The Journal of Physical and Colloid Chemistry, 1949, 53(9): 1466-1467.
(责任编辑:谭晓荷)

相似文献/References:

[1]邵 悦,赵会军,王小兵.水力旋流器油水分离数值模拟与实验研究[J].常州大学学报(自然科学版),2013,(02):51.[doi:10.3969/j.issn.2095-0411.2013.02.013]
 SHAO Yue,ZHAO Hui jun,WANG Xiao bing.Numerical Simulation and Experimental Investigation on Oil Water Separation within Liquid Liquid Hydrocyclone[J].Journal of Changzhou University(Natural Science Edition),2013,(03):51.[doi:10.3969/j.issn.2095-0411.2013.02.013]

备注/Memo

备注/Memo:
收稿日期: 2022-11-01。
基金项目: 国家自然科学基金资助项目(21808019, 41772240); 江苏省自然科学基金资助项目(BK20180958); 江苏省重点研发(社会发展)资助项目(BE2021637)。
作者简介: 高佳敏(1997—), 女, 江苏溧阳人, 硕士生。通信联系人: 薛金娟(1985—), E-mail: xuejinjuan@cczu.edu.cn

更新日期/Last Update: 1900-01-01