[1]丁桢岑,季伟伟,成悦,等.花生壳-磷矿粉共热解生物质炭的制备及吸附实验[J].常州大学学报(自然科学版),2023,35(03):52-60.[doi:10.3969/j.issn.2095-0411.2023.03.007 ]
 DING Zhencen,JI Weiwei,CHENG Yue,et al.Preparation and adsorption of biochar from co-pyrolysis of peanut shell and phosphate rock powder[J].Journal of Changzhou University(Natural Science Edition),2023,35(03):52-60.[doi:10.3969/j.issn.2095-0411.2023.03.007 ]
点击复制

花生壳-磷矿粉共热解生物质炭的制备及吸附实验 ()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年03期
页码:
52-60
栏目:
环境科学与工程
出版日期:
2023-05-28

文章信息/Info

Title:
Preparation and adsorption of biochar from co-pyrolysis of peanut shell and phosphate rock powder
文章编号:
2095-0411(2023)03-0052-09
作者:
丁桢岑季伟伟成悦胡浩邵敏万玉山
(常州大学 环境科学与工程学院, 江苏 常州 213164)
Author(s):
DING Zhencen JI Weiwei CHENG YueHU HaoSHAO Min WAN Yushan
(School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China)
关键词:
花生壳生物炭 磷矿粉 共热解 吸附
Keywords:
peanut shell biochar Pb ground phosphate rock co-pyrolysis adsorption
分类号:
X 703
DOI:
10.3969/j.issn.2095-0411.2023.03.007
文献标志码:
A
摘要:
将花生壳生物炭与磷矿粉采用不同质量比进行共热解制备得到共热解生物炭,通过批量实验探究了溶液pH、生物炭投加量、初始重金属离子浓度、吸附时间对共热解生物炭吸附Pb2+的影响,利用Langmuir和Freundlich等温吸附模型以及准一级和准二级吸附动力学模型拟合分析。结果表明,共热解生物炭吸附Pb2+的适宜pH为5。生物炭投加量为2 g/L,吸附时间为120 min条件下,Pb2+达到吸附平衡后,质量比为1:1时吸附量最大,吸附量为62.44 mg/g,且吸附过程符合Freundlich等温吸附模型和准二级吸附动力学模型。综上所述,所制备的花生壳-磷矿粉共热解生物炭对Pb2+的吸附能力明显优于花生壳生物炭,具有广阔的研究前景。
Abstract:
The co-pyrolytic biochar was prepared by co-pyrolysis of peanut shell biochar and phosphate rock powder with different weight ratios. The influences of solution PH value, biochar dosage, initial concentration of heavy metal ions and adsorption time on the adsorption of Pb2+ by co-pyrolytic biochar were investigated through batch experiments. Langmuir and Freundlich isothermal adsorption models as well as quasi-first-order and quasi-second-order adsorption kinetic models were used for fitting analysis. The results showed that the optimum pH value of co-pyrolysis biochar for Pb2+ adsorption was 5. Under the conditions of biochar dosage of 2 g/L and adsorption time of 120 min, Pb2+ reached adsorption equilibrium, the maximum adsorption capacity was 62.438 mg/g, and the adsorption process was in accordance with Freundlich isothermal adsorption model and quasi-second-order adsorption kinetics model. The results showed that the adsorption capacity of co-pyrolysis of peanut shell and phosphate rock powder to Pb2+ was obviously better than that of peanut shell biochar, which had broad research prospects.

参考文献/References:

[1] CHEN M Q, WANG J, ZHANG M X, et al. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 145-150.
[2] RAWAL A, JOSEPH S D, HOOK J M, et al. Mineral-biochar composites: molecular structure and porosity[J]. Environmental Science & Technology, 2016, 50(14): 7706-7714.
[3] VIGLAOV? E, GALAMBO M, DANKOV? Z, et al. Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal[J]. Waste Management, 2018, 79: 385-394.
[4] YAO Y, GAO B, FANG J E, et al. Characterization and environmental applications of clay-biochar composites[J]. Chemical Engineering Journal, 2014, 242: 136-143.
[5] YANG Z M, FANG Z Q, ZHENG L C, et al. Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite[J]. Ecotoxicology and Environmental Safety, 2016, 132: 224-230.
[6] 王碧玲, 谢正苗, 孙叶芳, 等. 磷肥对铅锌矿污染土壤中铅毒的修复作用[J]. 环境科学学报, 2005, 25(9): 1189-1194.
[7] JIANG G J, LIU Y H, HUANG L, et al. Mechanism of lead immobilization by oxalic acid-activated phosphate rocks[J]. Journal of Environmental Sciences, 2012, 24(5): 919-925.
[8] SABIHA J, WAHEED S, SIDDIQUE N, et al. Elemental analysis of phosphate rocks: for sustainable agriculture in Pakistan[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 278(1): 17-24.
[9] CAO X D, WAHBI A, MA L N, et al. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid[J]. Journal of Hazardous Materials, 2009, 164(2/3): 555-564.
[10] CHEN S B, ZHU Y G, MA Y B. The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils[J]. Journal of Hazardous Materials, 2006, 134(1/2/3): 74-79.
[11] GARRIDO F, ILLERA V, CAMPBELL C G, et al. Regulating the mobility of Cd, Cu and Pb in an acid soil with amendments of phosphogypsum, sugar foam, and phosphoric rock[J]. European Journal of Soil Science, 2006, 57(2): 95-105.
[12] HASHIMOTO Y, TAKAOKA M, OSHITA K, et al. Incomplete transformations of Pb to pyromorphite by phosphate-induced immobilization investigated by X-ray absorption fine structure(XAFS)spectroscopy[J]. Chemosphere, 2009, 76(5): 616-622.
[13] YAN Y B, QI F J, SESHADRI B, et al. Utilization of phosphorus loaded alkaline residue to immobilize lead in a shooting range soil[J]. Chemosphere, 2016, 162: 315-323.
[14] ZENG G M, WAN J, HUANG D L, et al. Precipitation, adsorption and rhizosphere effect: the mechanisms for Phosphate-induced Pb immobilization in soils: a review[J]. Journal of Hazardous Materials, 2017, 339: 354-367.
[15] WANG H Y, GAO B, WANG S S, et al. Removal of Pb(II), Cu(II), and Cd(II)from aqueous solutions by biochar derived from KMnO4 treated hickory wood[J]. Bioresource Technology, 2015, 197: 356-362.
[16] WANG Q, WANG B, LEE X Q, et al. Sorption and desorption of Pb(II)to biochar as affected by oxidation and pH[J]. Science of the Total Environment, 2018, 634: 188-194.
[17] 张杰, 贺敏婕, 陈可欣, 等. 马缨丹生物炭对水中Pb(Ⅱ)污染的吸附研究[J]. 现代化工, 2021, 41(7): 122-127.
[18] 朱俊波, 赵建兵, 周世萍, 等. 花生壳生物炭去除水中铅镉离子的性能及吸附机理研究[J]. 西南林业大学学报(自然科学版), 21(3): 1-9.
[19] YANG Y, WEI Z B, ZHANG X L, et al. Biochar from alternanthera philoxeroides could remove Pb(II)efficiently[J]. Bioresource Technology, 2014, 171: 227-232.
[20] OFOMAJA A E, UNUABONAH E I, OLADOJA N A. Competitive modeling for the biosorptive removal of copper and lead ions from aqueous solution by Mansonia wood sawdust[J]. Bioresource Technology, 2010, 101(11): 3844-3852.
[21] BETTS A R, CHEN N, HAMILTON J G, et al. Rates and mechanisms of Zn2+ adsorption on a meat and bonemeal biochar[J]. Environmental Science & Technology, 2013, 47(24): 14350-14357.
[22] TOPOLSKA J, MANECKI M, BAJDA T, et al. Solubility of pyromorphite Pb5(PO4)3Cl at 5—65° C and its experimentally determined thermodynamic parameters[J]. Chem Thermodyn, 2016. 98: 282-287.
[23] 李燕, 陈梅芹, 乔艳辉, 等. 废白土-花生壳生物炭吸附剂的制备及对Pb(Ⅱ)的吸附[J]. 材料导报, 2022, 36(6): 1-6.
(责任编辑:李艳,周安迪)

相似文献/References:

[1]肖建芳,王 燕,周 垒,等.锆、钼、钨改性石墨管-石墨炉原子吸收法测定电子级二乙二醇甲醚中铅含量[J].常州大学学报(自然科学版),2020,32(04):32.[doi:10.3969/j.issn.2095-0411.2020.04.005]
 XIAO Jianfang,WANG Yan,ZHOU Lei,et al.Zirconium, Molybdenum and Tungsten Modified Graphite Tube- Determination of Lead in Electronic Grade Diethylene Glycol Methyl Ether by Graphite Furnace Atomic Absorption Spectrometry[J].Journal of Changzhou University(Natural Science Edition),2020,32(03):32.[doi:10.3969/j.issn.2095-0411.2020.04.005]

备注/Memo

备注/Memo:
收稿日期: 2022-10-01。
基金项目: 江苏省研究生实践创新资助项目(SJCX21_1263)。
作者简介: 丁桢岑(1998—), 女, 江苏南京人, 硕士生。 通信联系人: 万玉山(1969—), E-mail: wanyushan@cczu.edu.cn

更新日期/Last Update: 1900-01-01