参考文献/References:
[1] MELERO J A, IGLESIAS J, MORALES G. Heterogeneous acid catalysts for biodiesel production: current status and future challenges[J]. Green Chemistry, 2009, 11(9): 1285-1308.
[2] ZHANG X M, ZHAO Y P, XU S T, et al. Polystyrene sulphonic acid resins with enhanced acid strength via macromolecular self-assembly within confined nanospace[J]. Nature Communications, 2014, 5: 3170.
[3] HOFFMANN F, CORNELIUS M, MORELL J, et al. Silica-based mesoporous organic-inorganic hybrid materials[J]. Angewandte Chemie International Edition, 2006, 45(20): 3216-3251.
[4] KULKARNI M G, GOPINATH R, MEHER L C, et al. Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification[J]. Green Chemistry, 2006, 8(12): 1056-1062.
[5] SU D S, PERATHONER S, CENTI G. Nanocarbons for the development of advanced catalysts[J]. Chemical Reviews, 2013, 113(8): 5782-5816.
[6] TITIRICI M M, WHITE R J, BRUN N, et al. Sustainable carbon materials[J]. Chemical Society Reviews, 2015, 44(1): 250-290.
[7] NAKAJIMA K, HARA M. Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst[J]. ACS Catalysis, 2012, 2(7): 1296-1304.
[8] OKAMURA M, TAKAGAKI A, TODA M, et al. Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon[J]. Chemistry of Materials, 2006, 18(13): 3039-3045.
[9] GUO X C, CAO Q, JIANG Y J, et al. Selective dehydration of fructose to 5-hydroxymethylfurfural catalyzed by mesoporous SBA-15-SO3H in ionic liquid BmimCl[J]. Carbohydrate Research, 2012, 351: 35-41.
[10] ZHAO L, BACCILE N K, GROSS S, et al. Sustainable nitrogen-doped carbonaceous materials from biomass derivatives[J]. Carbon, 2010, 48(13): 3778-3787.
[11] MARGELEFSKY E L, ZEIDAN R K, DAVIS M E. Cooperative catalysis by silica-supported organic functional groups[J]. Chemical Society Reviews, 2008, 37(6): 1118-1126.
[12] GAO J S, ZHANG X Y, LU Y, et al. Selective functionalization of hollow nanospheres with acid and base groups for cascade reactions[J]. Chemistry-A European Journal, 2015, 21(20): 7403-7407.
[13] MERINO E, VERDE-SESTO E, MAYA E M, et al. Synthesis of structured porous polymers with acid and basic sites and their catalytic application in cascade-type reactions[J]. Chemistry of Materials, 2013, 25(6): 981-988.
[14] LI P, CAO C Y, CHEN Z, et al. Core-shell structured mesoporous silica as acid-base bifunctional catalyst with designated diffusion path for cascade reaction sequences[J]. Chemical Communications(Cambridge, England), 2012, 48(85): 10541-10543.
[15] LI P, YU Y, HUANG P P, et al. Core-shell structured MgAl-LDO@Al-MS hexagonal nanocomposite: an all inorganic acid-base bifunctional nanoreactor for one-pot cascade reactions[J]. Journal of Materials Chemistry A, 2014, 2(2): 339-344.
[16] VERNEKAR D, JAGADEESAN D. Tunable acid-base bifunctional catalytic activity of FeOOH in an orthogonal tandem reaction[J]. Catalysis Science & Technology, 2015, 5(8): 4029-4038.
[17] YANG Y, LIU X, LI X B, et al. A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions[J]. Angewandte Chemie International Edition, 2012, 51(36): 9164-9168.
[18] 雷冲, 毛辉麾, 张忠明, 等. 两步水热法合成磺酸功能化碳质纳米微球及其催化性能研究[J]. 常州大学学报(自然科学版), 2018, 30(2): 23-29.
[19] JEON J W, SHARMA R, MEDURI P, et al. In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 7214-7222.
[20] FEI Y W, BROSH E. Experimental study and thermodynamic calculations of phase relations in the Fe—C system at high pressure[J]. Earth and Planetary Science Letters, 2014, 408: 155-162.
[21] 程飞, 毛辉麾, 任颖瑜, 等. 磁性层次复合碳质纳米微球的制备及其光催化性能研究[J]. 常州大学学报(自然科学版), 2019, 31(5): 42-48.
[22] LIU H, CHEN J Z, CHEN L M, et al. Carbon nanotube-based solid sulfonic acids as catalysts for production of fatty acid methyl ester via transesterification and esterification[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(6): 3140-3150.
[23] DÉMOLIS A, ESSAYEM N, RATABOUL F. Synthesis and applications of alkyllevulinates[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(6): 1338-1352.
[24] GOMBOTZ K, PARETTE R, AUSTIC G, et al. MnO and TiO solid catalysts with low-grade feedstocks for biodiesel production[J]. Fuel, 2012, 92(1): 9-15.
[25] LI S P, WANG Y Y, YANG Y D, et al. Conversion of levulinic acid to γ-valerolactone over ultra-thin TiO2 nanosheets decorated with ultrasmall Ru nanoparticle catalysts under mild conditions[J]. Green Chemistry, 2019, 21(4): 770-774.
[26] GUO T M, QIU M, QI X H. Selective conversion of biomass-derived levulinic acid to ethyl levulinate catalyzed by metal organic framework(MOF)-supported polyoxometalates[J]. Applied Catalysis A: General, 2019, 572: 168-175.
[27] MELCHIORRE M, CUCCIOLITO M E, DI SERIO M, et al. Homogeneous catalysis and heterogeneous recycling: a simple Zn(II)catalyst for green fatty acid esterification[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(17): 6001-6011.
(责任编辑:谭晓荷)