[1]徐伟刚,张 青,雷 冲,等.疏水磁多孔Fe3O4@碳质纳米微球用作酸碱协同催化的性能[J].常州大学学报(自然科学版),2023,35(04):27-36.[doi:10.3969/j.issn.2095-0411.2023.04.005]
 XU Weigang,ZHANG Qing,LEI Chong,et al.Surface hydrophobic magnetic porous Fe3O4@carbonaceous microspheres applicated as heterogeneous acid-base cooperative catalysis[J].Journal of Changzhou University(Natural Science Edition),2023,35(04):27-36.[doi:10.3969/j.issn.2095-0411.2023.04.005]
点击复制

疏水磁多孔Fe3O4@碳质纳米微球用作酸碱协同催化的性能()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年04期
页码:
27-36
栏目:
化学化工
出版日期:
2023-07-28

文章信息/Info

Title:
Surface hydrophobic magnetic porous Fe3O4@carbonaceous microspheres applicated as heterogeneous acid-base cooperative catalysis
文章编号:
2095-0411(2023)04-0027-10
作者:
徐伟刚12 张 青2 雷 冲2 桂豪冠2
(1.常州卫生高等职业技术学校 医药技术管理系, 江苏 常州 213003; 2.常州大学 石油化工学院, 江苏 常州 213164)
Author(s):
XU Weigang12 ZHANG Qing2 LEI Chong2 GUI Haoguan2
(1.Department of Medical Technology Management, Changzhou Hygiene Vocational Technology College, Changzhou 213003, China; 2.School of Petrochemical Engineering,Changzhou University,Changzhou 213164, China)
关键词:
Fe3O4@碳质 多孔 磁性 酸碱催化剂 酯化 酯交换
Keywords:
Fe3O4@carbonaceous porous magnetic acid-based catalysis esterification transesterification
分类号:
TQ 645.6
DOI:
10.3969/j.issn.2095-0411.2023.04.005
文献标志码:
A
摘要:
采用水热自组装和表面接枝法制备了具有核-壳式结构的Fe3O4@P-C-SO3H-N纳米材料。其内核由纳米Fe3O4构成,外壳由多孔磺酸基功能化的碳质结构组成,氨基硅烷与碳质表面的有机基团通过表面接枝连接,使材料获得以磺酸基为酸中心,以胺基为碱中心的酸碱协同催化活性,同时具备磁性、多孔性和疏水性等多种性能。Fe3O4@P-C-SO3H-N的各项物理化学性质采用BET,XRD,FT-IR,XPS,Raman,SEM和TEM等技术表征。催化活性实验表明 Fe3O4@P-C-SO3H-N在三羟基丙烷与正戊酸的酯化反应和三羟基丙烷三戊酸酯与甲醇的液相酯交换反应中具有良好的催化活性,这归因于介孔结构、碳质壳内的磺酸基、表面胺基和疏水性的协同作用,多孔结构促成致密但均匀的表面活性位点的分布,疏水性表面让油性的反应物更容易和活性位点接触。此外,磁性内核提供了超顺磁性能,能够方便纳米催化剂与反应体系的高效分离。
Abstract:
Fe3O4@P-C-SO3H-N was synthesized by hydrothermal self-assembly and surface grafting, which has a typical core-shell structure. The core was nano-sized Fe3O4, and the shell was composed of porous sulfonic acid functionalized carbonaceous group. Aminosilane and carbonaceous surface organic group were connected by surface grafting. The Fe3O4@P-C-SO3H-N material has sulfo group acid center with magnetic, porous and hydrophobic properties. The physico-chemical properties of the Fe3O4@ P-C-SO3H-N were characterized by BET, XRD, FT-IR, XPS, Raman, SEM and TEM. As a carbonaceous-based materials, Fe3O4@ P-C-SO3H-N has excellent catalytic activities in the esterification reaction of trihydroxypropane with valentic acid and the liquid phase transesterification reaction of trihydroxypropane trivalentate with methanol. This results were attributed to the combination of mesporous structure, the sulfonate group within the carbonaceous shell, surface amine group and hydrophobicity, resulting in a dense but uniform distribution of surface active sites that make oleatic reactants more easily in contact with the active sites. In addition, the magnetic core provides super paramagnetic property and facilitates the efficient separation of the nano-catalyst from the reaction system.

参考文献/References:

[1] MELERO J A, IGLESIAS J, MORALES G. Heterogeneous acid catalysts for biodiesel production: current status and future challenges[J]. Green Chemistry, 2009, 11(9): 1285-1308.
[2] ZHANG X M, ZHAO Y P, XU S T, et al. Polystyrene sulphonic acid resins with enhanced acid strength via macromolecular self-assembly within confined nanospace[J]. Nature Communications, 2014, 5: 3170.
[3] HOFFMANN F, CORNELIUS M, MORELL J, et al. Silica-based mesoporous organic-inorganic hybrid materials[J]. Angewandte Chemie International Edition, 2006, 45(20): 3216-3251.
[4] KULKARNI M G, GOPINATH R, MEHER L C, et al. Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification[J]. Green Chemistry, 2006, 8(12): 1056-1062.
[5] SU D S, PERATHONER S, CENTI G. Nanocarbons for the development of advanced catalysts[J]. Chemical Reviews, 2013, 113(8): 5782-5816.
[6] TITIRICI M M, WHITE R J, BRUN N, et al. Sustainable carbon materials[J]. Chemical Society Reviews, 2015, 44(1): 250-290.
[7] NAKAJIMA K, HARA M. Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst[J]. ACS Catalysis, 2012, 2(7): 1296-1304.
[8] OKAMURA M, TAKAGAKI A, TODA M, et al. Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon[J]. Chemistry of Materials, 2006, 18(13): 3039-3045.
[9] GUO X C, CAO Q, JIANG Y J, et al. Selective dehydration of fructose to 5-hydroxymethylfurfural catalyzed by mesoporous SBA-15-SO3H in ionic liquid BmimCl[J]. Carbohydrate Research, 2012, 351: 35-41.
[10] ZHAO L, BACCILE N K, GROSS S, et al. Sustainable nitrogen-doped carbonaceous materials from biomass derivatives[J]. Carbon, 2010, 48(13): 3778-3787.
[11] MARGELEFSKY E L, ZEIDAN R K, DAVIS M E. Cooperative catalysis by silica-supported organic functional groups[J]. Chemical Society Reviews, 2008, 37(6): 1118-1126.
[12] GAO J S, ZHANG X Y, LU Y, et al. Selective functionalization of hollow nanospheres with acid and base groups for cascade reactions[J]. Chemistry-A European Journal, 2015, 21(20): 7403-7407.
[13] MERINO E, VERDE-SESTO E, MAYA E M, et al. Synthesis of structured porous polymers with acid and basic sites and their catalytic application in cascade-type reactions[J]. Chemistry of Materials, 2013, 25(6): 981-988.
[14] LI P, CAO C Y, CHEN Z, et al. Core-shell structured mesoporous silica as acid-base bifunctional catalyst with designated diffusion path for cascade reaction sequences[J]. Chemical Communications(Cambridge, England), 2012, 48(85): 10541-10543.
[15] LI P, YU Y, HUANG P P, et al. Core-shell structured MgAl-LDO@Al-MS hexagonal nanocomposite: an all inorganic acid-base bifunctional nanoreactor for one-pot cascade reactions[J]. Journal of Materials Chemistry A, 2014, 2(2): 339-344.
[16] VERNEKAR D, JAGADEESAN D. Tunable acid-base bifunctional catalytic activity of FeOOH in an orthogonal tandem reaction[J]. Catalysis Science & Technology, 2015, 5(8): 4029-4038.
[17] YANG Y, LIU X, LI X B, et al. A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions[J]. Angewandte Chemie International Edition, 2012, 51(36): 9164-9168.
[18] 雷冲, 毛辉麾, 张忠明, 等. 两步水热法合成磺酸功能化碳质纳米微球及其催化性能研究[J]. 常州大学学报(自然科学版), 2018, 30(2): 23-29.
[19] JEON J W, SHARMA R, MEDURI P, et al. In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 7214-7222.
[20] FEI Y W, BROSH E. Experimental study and thermodynamic calculations of phase relations in the Fe—C system at high pressure[J]. Earth and Planetary Science Letters, 2014, 408: 155-162.
[21] 程飞, 毛辉麾, 任颖瑜, 等. 磁性层次复合碳质纳米微球的制备及其光催化性能研究[J]. 常州大学学报(自然科学版), 2019, 31(5): 42-48.
[22] LIU H, CHEN J Z, CHEN L M, et al. Carbon nanotube-based solid sulfonic acids as catalysts for production of fatty acid methyl ester via transesterification and esterification[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(6): 3140-3150.
[23] DÉMOLIS A, ESSAYEM N, RATABOUL F. Synthesis and applications of alkyllevulinates[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(6): 1338-1352.
[24] GOMBOTZ K, PARETTE R, AUSTIC G, et al. MnO and TiO solid catalysts with low-grade feedstocks for biodiesel production[J]. Fuel, 2012, 92(1): 9-15.
[25] LI S P, WANG Y Y, YANG Y D, et al. Conversion of levulinic acid to γ-valerolactone over ultra-thin TiO2 nanosheets decorated with ultrasmall Ru nanoparticle catalysts under mild conditions[J]. Green Chemistry, 2019, 21(4): 770-774.
[26] GUO T M, QIU M, QI X H. Selective conversion of biomass-derived levulinic acid to ethyl levulinate catalyzed by metal organic framework(MOF)-supported polyoxometalates[J]. Applied Catalysis A: General, 2019, 572: 168-175.
[27] MELCHIORRE M, CUCCIOLITO M E, DI SERIO M, et al. Homogeneous catalysis and heterogeneous recycling: a simple Zn(II)catalyst for green fatty acid esterification[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(17): 6001-6011.
(责任编辑:谭晓荷)

备注/Memo

备注/Memo:
收稿日期: 2023-02-25。
作者简介: 徐伟刚(1968—), 女, 江苏常州人, 副教授。 E-mail: xuweigang19680723@163.com
更新日期/Last Update: 1900-01-01