参考文献/References:
[1] GE T T, HAN J Y, QI Y M, et al. The toxic effects of chlorophenols and associated mechanisms in fish[J]. Aquatic Toxicology, 2017, 184: 78-93.
[2] LIU X F, ZHOU H, PEI S Z, et al. Oxygen-deficient WO3-x nanoplate array film photoanode for efficient photoelectrocatalytic water decontamination[J]. Chemical Engineering Journal, 2020, 381: 122740.
[3] SHU X Y, YANG Q, YAO F B, et al. Electrocatalytic hydrodechlorination of 4-chlorophenol on Pd supported multi-walled carbon nanotubes particle electrodes[J]. Chemical Engineering Journal, 2019, 358: 903-911.
[4] 冯珊珊, 郑伟, 丽嘉颖, 等. ZIF-8薄膜的制备及其去除刚果红染料废水的研究[J]. 常州大学学报(自然科学版), 2021, 33(5): 59-68.
[5] HUANG Y L, TIAN X K, NIE Y L, et al. Enhanced peroxymonosulfate activation for phenol degradation over MnO2 at pH 3.5—9.0 via Cu(II)substitution[J]. Journal of Hazardous Materials, 2018, 360: 303-310.
[6] TAKDASTAN A, KAKAVANDI B, AZIZI M, et al. Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: a new approach into catalytic degradation of bisphenol A[J]. Chemical Engineering Journal, 2018, 331: 729-743.
[7] 尚晓涵, 朱小彪. 中性pH条件下Fe/Cu/沸石催化非均相Fenton降解水中苯并三唑[J]. 环境工程, 2021, 39(2): 10-15.
[8] 侯永金, 刘杰, 徐啸. 过渡金属氧化物及其复合材料活化过硫酸盐的研究进展[J]. 化学与生物工程, 2022, 39(8): 10-15, 20.
[9] WANG J L, WANG S Z. Activation of persulfate(PS)and peroxymonosulfate(PMS)and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517.
[10] MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation: a review[J]. Chemosphere, 2016, 151: 178-188.
[11] QI C D, LIU X T, MA J, et al. Activation of peroxymonosulfate by base: implications for the degradation of organic pollutants[J]. Chemosphere, 2016, 151: 280-288.
[12] 韩爽, 肖鹏飞. 过硫酸盐活化技术在四环素类抗生素降解中的应用进展[J]. 环境化学, 2021, 40(9): 2873-2883.
[13] 张秋亚, 徐凯琳, 许筠, 等. g-C3N4可见光-臭氧催化氧化降解二苯甲酮-4[J]. 常州大学学报(自然科学版), 2022, 34(3): 54-63.
[14] DING D H, YANG S J, CHEN L W, et al. Degradation of norfloxacin by CoFe alloy nanoparticles encapsulated in nitrogen doped graphitic carbon(CoFe@N-GC)activated peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 392: 123725.
[15] 刘桂芳, 管威霆, 张玉平, 等. Co2+活化过硫酸盐降解水中的磺胺甲噁唑[J]. 高校化学工程学报, 2022, 36(2): 268-275.
[16] LI H R, TIAN J Y, XIAO F, et al. Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity[J]. Journal of Hazardous Materials, 2020, 385: 121518.
[17] WANG J, ZHAO Y, LI C T, et al. Peroxymonosulfate oxidation via paralleled nonradical pathways over iron and nitrogen doped porous carbons[J]. The Science of the Total Environment, 2022, 836: 155670.
[18] LUO J S, TILLEY S D, STEIER L, et al. Solution transformation of Cu2O into CuInS2 for solar water splitting[J]. Nano Letters, 2015, 15(2): 1395-1402.
[19] LIU X F, YOU S J, REN N Q, et al. Complete solar-driven dual-photoelectrode fuel cell for water purification and power generation in the presence of peroxymonosulfate[J]. Journal of Hazardous Materials, 2021, 416: 125682.
[20] LIU L M, YANG W Y, LI Q, et al. Synthesis of Cu2O nanospheres decorated with TiO2 nanoislands, their enhanced photoactivity and stability under visible light illumination, and their post-illumination catalytic memory[J]. ACS Applied Materials & Interfaces, 2014, 6(8): 5629-5639.
[21] ZHANG T, CHEN Y, WANG Y R, et al. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation[J]. Environmental Science & Technology, 2014, 48(10): 5868-5875.
[22] MA J, GRAHAM N J D. Degradation of atrazine by manganese-catalysed ozonation: influence of radical scavengers[J]. Water Research, 2000, 34(15): 3822-3828.
[23] SONG H R, YAN L X, JIANG J, et al. Electrochemical activation of persulfates at BDD anode: radical or nonradical oxidation?[J]. Water Research, 2018, 128: 393-401.
[24] SHARMA J, MISHRA I M, DIONYSIOU D D, et al. Oxidative removal of bisphenol A by UV-C/peroxymonosulfate(PMS): kinetics, influence of co-existing chemicals and degradation pathway[J]. Chemical Engineering Journal, 2015, 276: 193-204.
[25] PEI S Z, TENG J, REN N Q, et al. Low-temperature removal of refractory organic pollutants by electrochemical oxidation: role of interfacial joule heating effect[J]. Environmental Science & Technology, 2020, 54(7): 4573-4582.
[26] KARBASI M, KARIMZADEH F, RAEISSI K, et al. Improving visible light photocatalytic inactivation of E.coli by inducing highly efficient radical pathways through peroxymonosulfate activation using 3D, surface-enhanced, reduced graphene oxide(rGO)aerogels[J]. Chemical Engineering Journal, 2020, 396: 125189.
[27] WANG L, KONG D Y, JI Y F, et al. Formation of halogenated disinfection byproducts during the degradation of chlorophenols by peroxymonosulfate oxidation in the presence of bromide[J]. Chemical Engineering Journal, 2018, 343: 235-243.
[28] WANG H Z, GUO W Q, LIU B H, et al. Edge-nitrogenated biochar for efficient peroxydisulfate activation: an electron transfer mechanism[J]. Water Research, 2019, 160: 405-414.
[29] 谢凯, 叶菊梅, 孙萍, 等. 改性有序介孔碳活化过硫酸盐非自由基降解扑热息痛[J]. 环境科学学报, 2022, 42(4): 149-156.
[30] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[31] LIM J, KWAK D Y, SIELAND F, et al. Visible light-induced catalytic activation of peroxymonosulfate using heterogeneous surface complexes of amino acids on TiO2[J]. Applied Catalysis B: Environmental, 2018, 225: 406-414.
(责任编辑:李艳,周安迪)