[1]刘雪峰,郑春禹,滕 洁,等.固定化Cu2O活化过硫酸盐降解水中4-氯酚[J].常州大学学报(自然科学版),2023,35(04):52-60.[doi:10.3969/j.issn.2095-0411.2023.04.008]
 LIU Xuefeng,ZHENG Chunyu,TENG Jie,et al.Immobilized Cu2O activated persulfate for degradation of 4-chlorophenol in water[J].Journal of Changzhou University(Natural Science Edition),2023,35(04):52-60.[doi:10.3969/j.issn.2095-0411.2023.04.008]
点击复制

固定化Cu2O活化过硫酸盐降解水中4-氯酚()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第35卷
期数:
2023年04期
页码:
52-60
栏目:
环境科学与工程
出版日期:
2023-07-28

文章信息/Info

Title:
Immobilized Cu2O activated persulfate for degradation of 4-chlorophenol in water
文章编号:
2095-0411(2023)04-0052-09
作者:
刘雪峰1 郑春禹2 滕 洁1 许 霞1
(1.常州大学 城市建设学院, 江苏 常州 213164; 2.黑龙江全洁环保科技有限公司, 黑龙江 哈尔滨 150080)
Author(s):
LIU Xuefeng1 ZHENG Chunyu2 TENG Jie1 XU Xia1
(1.School of Urban Construction, Changzhou University, Changzhou 213164, China; 2.Heilongjiang Quanjie Environmental Protection Technology Co., Ltd., Harbin 150080, China)
关键词:
固定化 铜基材料 过硫酸盐活化 4-氯酚 非自由基路径
Keywords:
immobiliztion copper-based material persulfate activation 4-chlorophenol non-radical reaction pathway
分类号:
X 703
DOI:
10.3969/j.issn.2095-0411.2023.04.008
文献标志码:
A
摘要:
为解决活化过硫酸盐催化剂回收困难和自由基氧化导致重金属大量溶出等问题,文章设计并制备了固定化Cu2O过渡金属材料,通过活化过硫酸盐(PMS)的非自由基路径,降解水中的4-氯酚(4-CP)。在120 min反应时间里,PMS投加量为2.0 mmol/L时,Cu2O/PMS体系对10 mg/L 4-CP的降解效率为95.0%,矿化效率为53.1%。PMS投加量影响有机污染物降解速率,PMS在2.0~6.0 mmol/L时,增加PMS可以提高反应速率。机制研究表明,非自由基反应路径主要通过Cu2O表面的Cu(I)与PMS形成表面复合物降解有机污染物,实现对水中4-CP的有效去除,并且有效抑制了铜离子的大量溶出,为过硫酸盐活化降解水中污染物提供了新思路。
Abstract:
To solve the problem that the power catalyst is difficulty to recover and heavy metal ions dissolution caused by radical oxidation during the water treatment, this study reports the immobilized Cu2O activated persulfate to degrade 4-chlorophenol(4-CP)by non-radical pathway. The Cu2O/PMS system achieved the degradation rate and TOC removal of 4-CP(10 mg/L)as high as 95.0% and 53.1% in the presence of 2.0 mmol/L PMS within 120 min. The dosage of PMS was a parameter affecting the reaction rate. Correspondingly, increasing PMS in the range of 2.0—6.0 mmol/L could improve overall rate of pollutant degradation reaction. The mechanism experiments indicated that the non-radical pathway was the main reaction mechanism associated with direct activation of PMS by Cu2O, resulting in 4-CP removal via activation of PMS by surface complex on Cu2O. The above reaction process not only realized the effective removal of 4-CP in water, but also inhibited the copper ions dissolution. This study provides a new idea for activated persulfate degradation of pollutants in water.

参考文献/References:

[1] GE T T, HAN J Y, QI Y M, et al. The toxic effects of chlorophenols and associated mechanisms in fish[J]. Aquatic Toxicology, 2017, 184: 78-93.
[2] LIU X F, ZHOU H, PEI S Z, et al. Oxygen-deficient WO3-x nanoplate array film photoanode for efficient photoelectrocatalytic water decontamination[J]. Chemical Engineering Journal, 2020, 381: 122740.
[3] SHU X Y, YANG Q, YAO F B, et al. Electrocatalytic hydrodechlorination of 4-chlorophenol on Pd supported multi-walled carbon nanotubes particle electrodes[J]. Chemical Engineering Journal, 2019, 358: 903-911.
[4] 冯珊珊, 郑伟, 丽嘉颖, 等. ZIF-8薄膜的制备及其去除刚果红染料废水的研究[J]. 常州大学学报(自然科学版), 2021, 33(5): 59-68.
[5] HUANG Y L, TIAN X K, NIE Y L, et al. Enhanced peroxymonosulfate activation for phenol degradation over MnO2 at pH 3.5—9.0 via Cu(II)substitution[J]. Journal of Hazardous Materials, 2018, 360: 303-310.
[6] TAKDASTAN A, KAKAVANDI B, AZIZI M, et al. Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: a new approach into catalytic degradation of bisphenol A[J]. Chemical Engineering Journal, 2018, 331: 729-743.
[7] 尚晓涵, 朱小彪. 中性pH条件下Fe/Cu/沸石催化非均相Fenton降解水中苯并三唑[J]. 环境工程, 2021, 39(2): 10-15.
[8] 侯永金, 刘杰, 徐啸. 过渡金属氧化物及其复合材料活化过硫酸盐的研究进展[J]. 化学与生物工程, 2022, 39(8): 10-15, 20.
[9] WANG J L, WANG S Z. Activation of persulfate(PS)and peroxymonosulfate(PMS)and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517.
[10] MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation: a review[J]. Chemosphere, 2016, 151: 178-188.
[11] QI C D, LIU X T, MA J, et al. Activation of peroxymonosulfate by base: implications for the degradation of organic pollutants[J]. Chemosphere, 2016, 151: 280-288.
[12] 韩爽, 肖鹏飞. 过硫酸盐活化技术在四环素类抗生素降解中的应用进展[J]. 环境化学, 2021, 40(9): 2873-2883.
[13] 张秋亚, 徐凯琳, 许筠, 等. g-C3N4可见光-臭氧催化氧化降解二苯甲酮-4[J]. 常州大学学报(自然科学版), 2022, 34(3): 54-63.
[14] DING D H, YANG S J, CHEN L W, et al. Degradation of norfloxacin by CoFe alloy nanoparticles encapsulated in nitrogen doped graphitic carbon(CoFe@N-GC)activated peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 392: 123725.
[15] 刘桂芳, 管威霆, 张玉平, 等. Co2+活化过硫酸盐降解水中的磺胺甲噁唑[J]. 高校化学工程学报, 2022, 36(2): 268-275.
[16] LI H R, TIAN J Y, XIAO F, et al. Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity[J]. Journal of Hazardous Materials, 2020, 385: 121518.
[17] WANG J, ZHAO Y, LI C T, et al. Peroxymonosulfate oxidation via paralleled nonradical pathways over iron and nitrogen doped porous carbons[J]. The Science of the Total Environment, 2022, 836: 155670.
[18] LUO J S, TILLEY S D, STEIER L, et al. Solution transformation of Cu2O into CuInS2 for solar water splitting[J]. Nano Letters, 2015, 15(2): 1395-1402.
[19] LIU X F, YOU S J, REN N Q, et al. Complete solar-driven dual-photoelectrode fuel cell for water purification and power generation in the presence of peroxymonosulfate[J]. Journal of Hazardous Materials, 2021, 416: 125682.
[20] LIU L M, YANG W Y, LI Q, et al. Synthesis of Cu2O nanospheres decorated with TiO2 nanoislands, their enhanced photoactivity and stability under visible light illumination, and their post-illumination catalytic memory[J]. ACS Applied Materials & Interfaces, 2014, 6(8): 5629-5639.
[21] ZHANG T, CHEN Y, WANG Y R, et al. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation[J]. Environmental Science & Technology, 2014, 48(10): 5868-5875.
[22] MA J, GRAHAM N J D. Degradation of atrazine by manganese-catalysed ozonation: influence of radical scavengers[J]. Water Research, 2000, 34(15): 3822-3828.
[23] SONG H R, YAN L X, JIANG J, et al. Electrochemical activation of persulfates at BDD anode: radical or nonradical oxidation?[J]. Water Research, 2018, 128: 393-401.
[24] SHARMA J, MISHRA I M, DIONYSIOU D D, et al. Oxidative removal of bisphenol A by UV-C/peroxymonosulfate(PMS): kinetics, influence of co-existing chemicals and degradation pathway[J]. Chemical Engineering Journal, 2015, 276: 193-204.
[25] PEI S Z, TENG J, REN N Q, et al. Low-temperature removal of refractory organic pollutants by electrochemical oxidation: role of interfacial joule heating effect[J]. Environmental Science & Technology, 2020, 54(7): 4573-4582.
[26] KARBASI M, KARIMZADEH F, RAEISSI K, et al. Improving visible light photocatalytic inactivation of E.coli by inducing highly efficient radical pathways through peroxymonosulfate activation using 3D, surface-enhanced, reduced graphene oxide(rGO)aerogels[J]. Chemical Engineering Journal, 2020, 396: 125189.
[27] WANG L, KONG D Y, JI Y F, et al. Formation of halogenated disinfection byproducts during the degradation of chlorophenols by peroxymonosulfate oxidation in the presence of bromide[J]. Chemical Engineering Journal, 2018, 343: 235-243.
[28] WANG H Z, GUO W Q, LIU B H, et al. Edge-nitrogenated biochar for efficient peroxydisulfate activation: an electron transfer mechanism[J]. Water Research, 2019, 160: 405-414.
[29] 谢凯, 叶菊梅, 孙萍, 等. 改性有序介孔碳活化过硫酸盐非自由基降解扑热息痛[J]. 环境科学学报, 2022, 42(4): 149-156.
[30] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[31] LIM J, KWAK D Y, SIELAND F, et al. Visible light-induced catalytic activation of peroxymonosulfate using heterogeneous surface complexes of amino acids on TiO2[J]. Applied Catalysis B: Environmental, 2018, 225: 406-414.
(责任编辑:李艳,周安迪)

相似文献/References:

[1]张 宇,周少敏,朱孝霖,等.磁性材料固定化脂肪酶的制备及其催化性能研究[J].常州大学学报(自然科学版),2018,30(04):28.[doi:10.3969/j.issn.2095-0411.2018.04.005]
 ZHANG Yu,ZHOU Shaomin,ZHU Xiaolin,et al.Preparation and Catalytical Performance of Immobilized Liphase on Nano-Maganetic Material[J].Journal of Changzhou University(Natural Science Edition),2018,30(04):28.[doi:10.3969/j.issn.2095-0411.2018.04.005]

备注/Memo

备注/Memo:
收稿日期: 2023-01-23。
基金项目: 江苏省教育厅高校自然科学基金资助项目(22KJB610007); 常州大学自然科学基金资助项目(ZMF22020037)。
作者简介: 刘雪峰(1991—), 男, 黑龙江大庆人, 博士, 讲师。 E-mail: liuxuefeng@cczu.edu.cn
更新日期/Last Update: 1900-01-01